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This column is an open forum. We welcome opinions
on all mathematical issues: research, education, and
communication.

Back to Basics
——–

A Bridge Too Far

by Scott Carlson †

“A widespread misconception about mathematics is
that it is completely hierarchical—first arithmetic, then
algebra, then calculus, then more abstraction.”
Allen Paulos

Recently, it has become fashionable to criticize current
mathematics curricula, and especially the use of calculators
in primary and secondary schools. Generally, the criticisms
are rooted in the misconception Paulos details above. Often,
they are expressed in statements such as: “These kids don’t
know their times tables,” or “Our students are unable to work
with fractions.” To many minds, these are the cardinal sins
of mathematics. Without the ability to recite multiplication
facts, it is thought, a person is condemned never to under-
stand any other mathematics, because multiplication is the
key to mathematical nirvana. Generally, the perceived villain
is the calculator, thus the conclusion: if we remove the calcu-
lators from the classroom, all will be right with mathematics.

About a year ago, I was buying a stamp at the local post
office. The 50-ish woman helping me spoke at length about
the problems with math education today. It boiled down to
the fact that kids do not know how to multiply, and are too
dependent on calculators. Next, I expected a story about her
trips to school three miles through two feet of snow, uphill
both ways, all the while dragging her little brother. She then
proceeded to dig out her calculator to find the GST on my 56
cent stamp. This is obviously ironic, but the real irony is a
little more subtle. I am a product of the new, calculator-savvy
generation, yet I could mentally calculate the GST before she
could find her calculator. The new curriculum is certainly not
responsible for her calculator dependence. Perhaps much of
the criticism of calculator use is just a sublimation of nostalgic
yearning for those happy days of yesteryear.

That is not to say basic skills and concepts are superflu-
ous. The error is in thinking that no interesting or worthwhile
mathematics is possible without first spending years reciting
basic facts. I recently encountered an engineer who does not

† Scott Carlson teaches mathematics at Strathmore High School.
His eight years of teaching include two years as Mathematics Professional
Development Coordinator for the Calgary Regional Consortium. He
holds degrees in Education and Pure Mathematics from the University
of Calgary.

know her multiplication facts. Is this admirable? Clearly
not. Is she proud of this? Again, no. But on the other hand,
higher mathematics is obviously possible even with gaps in
background knowledge. The reality is that not every per-
son in this generation, nor any preceding generation, is flaw-
less. This is not the fault of the calculator. The intelligent
and appropriate use of calculators does not create these gaps,
but mitigates them. The calculator, properly used, acts as a
scaffolding to enable a person to get beyond minor gaps in
background to higher mathematical concepts.

There are other advantages to the use of calculators and
other technology in mathematics instruction. The graphing
calculator helps make explicit the connections and differences
between algebraic and graphic representations. It also helps
highlight the advantages and disadvantages of each, depend-
ing on context. When calculators are used properly, students
learn that graphs are a good way to see the global behaviour
of a function, but that algebraic methods and representations
are best for deciding what happens at any given point. In
other words, students learn by experience that graphs yield
approximations, yet algebraic methods are exact. Certainly,
students have been told this before, but the calculator allows
them to experience it. Though we may not like it, the reality
is that experience is usually the best teacher.

As an example, for a given quadratic function, students
can compare the value of an extremum obtained analytically
to one obtained graphically. In many cases, there is slight
disagreement. This may seem problematic at first, but in
reality it offers an opportunity to focus on the difference in
representations, and on the importance of choosing methods
that achieve the goal in the most accurate and desirable way.
When technology is used effectively, the student sees its short-
comings, and understands that the calculator is not an infal-
lible black box. In this case, the teacher can capitalize on the
desire for a quick and painless solution, and demonstrate that
quick and painless often sacrifices accuracy. In particular, us-
ing the calculator does not mean students no longer need to
learn to complete the square; instead, they see firsthand that
completing the square is the more accurate approach. At the
same time, they acquire a device that helps them incorporate
their intuition and check their answers.

In his book The Math Gene, Keith Devlin defines mathe-
matics as “the science of patterns.” Devlin is neither the first
nor the last to define mathematics this way. In fact, most
practicing mathematicians would likely give a similar defi-
nition. Pure mathematicians, applied mathematicians, and
statisticians find and prove theorems based on the patterns
they find. Much of the beauty of math is in the generalization
of results; that is, the application of patterns to broader and
broader places. Used intelligently, calculators help students
find patterns for themselves. Those with a utilitarian bent
may say that it is more efficient to tell the students what
the patterns are. However, if there is one thing that we have
learned from research and experience, it is that telling is not
teaching. Or, as the old proverb goes:

I hear I forget,
I see I remember,
I do I understand.

While it may be more efficient to tell students the rules and
expect them to memorize, learning is not an efficient process.
Much more learning occurs when students experiment and
find patterns for themselves. Before the advent of technology,
this was an impractical position, but this is no longer true. We
can now design effective investigations so that students can
uncover mathematical principles and patterns for themselves.
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For example, rather than just telling students that the
graph of distance versus time for a falling object is a parabola,
handheld technology enables students to experiment with
falling objects, collect data firsthand, and see the connection
between the motion and the graph themselves. The students
can repeat the experiment as many times as they need to,
with numerous objects. This also gives the teacher a natu-
ral reason to talk about quadratics, properties of parabolas,
and the relevant ideas and definitions. The calculator does
not replace the need for students to know about quadratics,
but it makes the knowledge more accessible. In my own ex-
perience, a carefully designed activity can communicate the
important properties and definitions of parabolas to students
in the same amount of time as a traditional lecture. How-
ever, days later, more students will remember the terms, and
at least one instance where a quadratic is important. Calcula-
tors don’t replace thinking; they enable it, when intelligently
used.

The most obvious argument for graphing technology is that
it enables visualization. The best way to have students de-
velop the ability to visualize parabolas, for instance, is es-
tablishing familiarity by seeing many of them, with varying
orientations and positions. The easiest way to do this is to let
students graph as many as necessary with some sort of fast
graphing tool, such as a calculator or computer. The idea is
not to excuse students from knowing what a parabola looks
like, how it can be transformed, or how its equation deter-
mines its graph—rather, it is to enable students to find the
underlying patterns and principles first-hand. Later, this will
allow students to visualize parabolas more easily when using
them in other areas of mathematics.

Similarly, if the task is finding volumes of solids of revolu-
tion, the logical place to begin is with a sketch of the function
that determines the solid. With a graphing calculator, stu-
dents can quickly obtain a graph, and then visualize the solid
of revolution. In this way, the students are able to spend
their time and energy on the appropriate calculus concepts.
The calculator is not thinking for the students, who are still
required to choose the appropriate method and perform the
required integration.

Educators and non-educators alike often dismiss new prac-
tices in education as fads, or worse. Many have criticized the
use of calculators using such logic. Interestingly, rarely do the
critics give any objective evidence to support their position.
Basing a conclusion on small, non-random samples is clearly
a bad practice, and mathematicians in particular should not
make this error. In 1999, Penelope Dunham conducted a
review of the research on calculator use in mathematics edu-
cation. After reviewing literally dozens of studies conducted
since graphing calculators were introduced in 1986, she found
several trends:

• “Students who use graphing calculators display better un-
derstanding of function and graph concepts, improved
problem solving, and higher scores on achievement tests
for algebra and calculus skills.

• Students who learn paper-and-pencil skills in conjunction
with technology-based instruction and are tested without
calculators perform as well or better than students who
do not use technology in instruction.

• Those (teachers) who support mastery first often view
mathematics as computation rather than a process for
patterning, reasoning, and problem solving.”

She found, not surprisingly, that calculator use did not
eliminate student error, and even that a class of calculator-

induced errors existed. Her conclusion, though, is unequivo-
cal: “Handheld technology can and should play an important
role in mathematics instruction.”

Another source of objective data is the recent (1999)
TIMSS-R study. This study compares achievement in math
and science for large, random samples of students from 39
countries. For Canadians, and especially Albertans, there
is plenty of good news in the results. Canadian grade eight
students scored significantly higher than the international av-
erage on the math exam. In fact, only six countries had av-
erages significantly higher than Canadian students. Alberta
students did even better. Not only is this excellent news, it
discredits the argument that calculator use inhibits the devel-
opment of basic skills—the use of calculators was forbidden
on the exam.

To go further, in several of the countries that scored higher
than Canada in the study, calculators are used as much as,
or more than, in Canada. For example, in Belgium, calcula-
tor use is compulsory after grade nine. In the Netherlands,
calculators are compulsory for national exams and for grades
11 and 12. In Hong Kong, calculator use is unrestricted after
grade seven; in Japan, it’s after grade five. The calculator has
clearly contributed to the success of mathematics students the
world over.

Calculators are not the origin of society’s innumeracy. Most
of the parents of the students I have taught learned mathe-
matics before the advent of calculators in schools, and cer-
tainly before graphing calculators were conceived. Com-
monly, they confide that they succeeded in school mathemat-
ics until they were introduced to fractions. This perplexes me.
If calculators are to shoulder the blame for society’s lack of
fluency with rational numbers, how did they perpetrate this
crime in advance? Perhaps the technology is more potent
than we supposed.

Calculators are certainly not a panacea for society’s innu-
meracy. Undoubtedly, students and teachers have used calcu-
lators improperly. The solution is not, as some advocate, to
discard or prohibit the technology. Many university faculty
are notorious for their misuse of chalkboards, but no one sug-
gests that the solution is to confiscate the chalk. Calculators
should not be used to replace logic, thinking, or algebra. No
reasonable person advocates such replacement, nor does our
public school curriculum.

Since the technology is likely to become more pervasive, the
mathematics community must encourage uses of technology
that develop logical, appropriate mathematical thinking. Cer-
tainly this means a change in emphasis in some math courses,
but this is not equivalent to lowering our standards. We will
likely be required to recognize mathematically correct and
appropriate work in formats that are new to us, but this
has been required of others before us. Even in mathemat-
ics, change is inevitable. We may not all like the Emperor’s
new wardrobe, but it still covers the essentials.

References:
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Mathematics
of the Past

by
Garry Kasparov

Since my early childhood, I have been inspired and excited
by ancient and medieval history. I also have a good memory,
which allows me to remember historical events, dates, names,
and related details. So, after reading many history books, I
analysed and compared the information and, little by little, I
began to feel that there was something wrong with the dates
of antiquity. There were too many discrepancies and contra-
dictions that could not be explained within the framework of
traditional chronology. For example, let’s examine what we
know of ancient Rome.

Edward Gibbon
(1737-1794)

The monumental work The De-
cline and Fall of the Roman Em-
pire, written by English historian
and scholar Edward Gibbon (1737-
1794), is a great source of detailed
information on the history of the
Roman Empire. Before comment-
ing on this book, let me remark that
I cannot imagine how—with their
vast territories—the Romans did
not use geographical maps, how they
conducted trade without a banking
system, and how the Roman army,
on which the Empire rested, was un-
able to improve its weapons and mil-
itary tactics during nine centuries of
wars.

With the use of simple mathematics, it is possible to dis-
cover in ancient history several such dramatic contradictions,
which historians don’t seem to consider. Let us analyze some
numbers. E. Gibbon gives a very precise description of a Ro-
man legion, which “ . . . was divided into 10 cohorts. . .The
first cohort,. . . was formed of 1 105 soldiers. . .The remaining
9 cohorts consisted each of 555 soldiers,. . .The whole body of
legionary infantry amounted to 6 100 men.”1 He also writes,
“The cavalry, without which the force of the legion would have
remained imperfect, was divided into 10 troops or squadrons;
the first, as the companion of the first cohort, consisted of a
132 men; while each of the other 9 amounted only to 66. The
entire establishment formed a regiment. . . of 726 horses, natu-
rally connected with its respected legion. . . ”2 Finally, he gives
an exact estimate of a Roman legion: “We may compute, how-
ever, that the legion, which was itself a body of 6 831 Romans,
might, with its attendant auxiliaries, amount to about 12 500
men. The peace establishment of Hadrian and his successors
was composed of no less than 30 of these formidable brigades;
and most probably formed a standing force of 375 000.”3 This
enormous military force of 375 000 men, maintained during
a time of peace, was larger than the Napoleonic army in the

1 See [1], page 30.
2 See [1], p. 32.
3 See [1], p. 35.

1800s.4 Let me point out that according to the Encyclopæ-
dia Britannica,5 “Battles on the Continent in the mid-18th
century typically involved armies of about 60 000 to 70 000
troops.” Of course, an army needed weapons, equipment, sup-
plies, etc. Again, E. Gibbon gives us a lot of details:6 “Be-
sides their arms, which the legionaries scarcely considered as
an encumbrance, they were laden with their kitchen furniture,
the instruments of fortifications, and the provisions of many
days. Under this weight, which would oppress the delicacy
of a modern soldier,7 they were trained by a regular step to
advance, in about six hours, nearly twenty miles. On the ap-
pearance of an enemy, they threw aside their baggage, and by
easy and rapid evolutions converted the column of march into
an order of battle.” This description of the physical fitness of
an average Roman soldier is extraordinary. It brings us to the
very strange conclusion that, at some point, the human race
retrogressed in its ability to cope with physical problems. Is
it possible that there was a gradual decline of the human race,
with hundreds of thousands of Schwarzenegger-like athletes of
Roman times evolving into medieval knights with relatively
weak bodies (like today’s teenage boys), whose little suits of
armor are today proudly displayed in museums? Is there a
reasonable biological or genetic explanation to this dramatic
change affecting the human race over such a short period of
time?

In order to supply such an army with weapons, a whole
industry would have been needed. In his work, E. Gibbon
explicitly mentions iron (or even steel) weapons: “Besides a
lighter spear, the legionary soldier grasped in his right hand
the formidable pilum. . . , whose utmost length was about six
feet, and which was terminated by a massy triangular point
of steel of eighteen inches.”8 In another place, he indicates
“The use of lances and of iron maces. . . ”9 It is believed that
the extraction of iron from ores was very common in the Ro-
man Empire.10 However, to smelt pure iron, a temperature
of 1 539◦C is required, which couldn’t be achieved by burn-
ing wood or coal without the blowing or the blast furnaces
invented more than a 1000 years later.11 Even in the 15th
century, the iron produced was of quite poor quality because
large amounts of carbon had to be absorbed to lower the
melting temperature to 1 150◦C. There is also the question of
sufficient resources—the blast furnaces used in the mid-16th
century required large amounts of wood to produce charcoal,
an expensive and unclean process that led to the eventual
deforestation of Europe. How could ancient Rome have sus-
tained a production of quality iron on the scale necessary to
supply thousands of tonnes of arms and equipment to its vast
army?

Just by estimating the size of the army, we can conclude
that the population of the Eastern and Western Roman Em-
pire in the second century AD was at least 20 million people,
but it could have been as high as 40 or even 50 million. Ac-
cording to E. Gibbon, “Ancient Italy. . . contained eleven hun-
dred and ninety seven cities.”12 The city of Rome had more

4 After 1800, Napoleon routinely maneuvered armies of 250 000. See
the Encyclopædia Britannica.

5 Encyclopædia Britannica online at http://www.britannica.com/
6 See [1], p. 35.
7 E. Gibbon wrote these words in the years 1776–88, before the

French Revolution and the Napoleonic wars.
8 See [1], p. 31.
9 See [1], p. 33.
10 See Encyclopædia Britannica.
11 See [7], where the presented facts prove that real metallurgy

started in the 16th century. Coal was discovered in England only in
the 11th century.

12 See [1], page 71.
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than a half-million inhabitants, and there were other great
cities in the Empire. All of these cities were connected by
a network of paved public highways, their combined lengths
totalling more than 4000 miles!13 This could only be pos-
sible in a technologically advanced society. According to
J.C. Russell,14 in the 4th century, the population of the West-
ern Roman Empire was 22 million (including 750 000 people
in England and five million in France), while the population
of the Eastern Roman Empire was 34 million.

It is not hard to determine that there is a serious problem
with these numbers. In England, a population of four million
in the 15th century grew to 62 million in the 20th century.
Similarly, in France, a population of about 20 million in the
17th century (during the reign of Louis XIV), grew to 60
million in the 20th century—and this growth occurred despite
losses due to several atrocious wars. We know from historical
records that during the Napoleonic wars alone, about three
million people perished, most of them young men. But there
was also the French Revolution, the wars of the 18th century
in which France suffered heavy losses, and the slaughter of
World War I. By assuming a constant population growth rate,
it is easy to estimate that the population of England doubled
every 120 years, while the population of France doubled every
190 years.

| | | | | | | | | | | | | | | | |
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Figure 1

Graphs showing the hypothetical growth of these two func-
tions are provided in Figure 1. According to this model, in
the 4th and 5th centuries, at the breakdown of the Roman
Empire, the (hypothetical) population of England would have
been 10 000 to 15 000, while the population of France would
have been 170 000 to 250 000. However, according to esti-

13 See [1], page 74.
14 See [6].

mates based on historical documents, these numbers should
be in the millions.

It seems that starting with the 5th century, there were pe-
riods during which the population of Europe stagnated or
decreased. Attempts at logical explanations, such as poor
hygiene, epidemics, and short lifespan, can hardly withstand
criticism. In fact, from the 5th century until the 18th century,
there was no significant improvement in sanitary conditions
in Western Europe, there were many epidemics, and hygiene
was poor. Also, the introduction of firearms in the 15th cen-
tury resulted in more war casualties. According to UNESCO
demographic resources, an increase of 0.2 per cent per an-
num is required to assure the sustainable growth of a human
population, while an increase of 0.02 per cent per annum is
described as a demographical disaster. There is no evidence
that such a disaster has ever happened to the human race.
Therefore, there is no reason to assume that the growth rate
in ancient times differed significantly from the growth rate in
later epochs.

These discrepancies lead me to suspect that there is a gap
between the historical dates attributed to the Roman Em-
pire and those suggested by the above computations. But
there are more inconsistencies in the historical record of hu-
mankind. As I have already noted, there are similar gaps of
several centuries in technological and scientific development.
Notice that knowledge and technology traditionally associ-
ated with the ancient world presumably disappears during
the Dark Ages, only to resurface in the 15th century during
the early Renaissance. The history of mathematics provides
one such example. By chronologically and logically ordering
major mathematical achievements, beginning with arithmetic
and Greek geometry and finishing with the invention of calcu-
lus by I. Newton (1643–1727) and G.W. Leibnitz (1646–1716),
we see a thousand-year gap separating antiquity from the new
era. Is this only a coincidence? But what about astron-
omy, chemistry (alchemy), medicine, biology, and physics?
There are too many inconsistencies and unexplained riddles
in ancient history. Today, we are unable to build simple ob-
jects made in ancient times in the way they were originally
created15—this in a time when technology has produced the
space shuttle and science is on the brink of cloning the human
body! It is preposterous to blame all of the lost secrets of the
past on the fire that destroyed the Library of Alexandria, as
some have suggested.

It is unfortunate that each time a paradox of history un-
folds, we are left without satisfactory answers and are per-
suaded to believe that we have lost the ancient knowledge.
Instead of disregarding the facts that disagree with the tradi-
tional interpretation, we should accept them and put the the-
ory under rigorous scientific scrutiny. Explanations of these
paradoxes and contradictions should not be left only to his-
torians. These are scientific and multidisciplinary problems
and, in my opinion, history—as a single natural science—is
unable on its own to solve them.

I think that the chronology of technological and scien-
tific development should be carefully investigated. The too-
numerous claims of technological wonders in antiquity turn
history into science fiction (e.g., the production of mono-
lithic stone blocks in Egypt, the precise astronomical calcu-
lations obtained without mechanical clocks, the glass objects
and mirrors made 5000 years ago,16 and so on). It is un-

15 For example, try to build a working wheel according to ancient
diagrams, but do it without using iron or iron tools.

16 Making glass, in technical terms, is a secondary product of black
metallurgy requiring a temperature of 1 280◦C.
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fortunate that historians reject scientific incursion into their
domain. For instance, the most reasonable explanation of
Egyptian pyramid-building technology, presented by French
chemist Joseph Davidovits17 (the creator of the geopolymer
technology), was rejected by Egyptologists, who refused to
provide him with samples of pyramid material.

About five years ago, I came across several books written
by two mathematicians from Moscow State University: aca-
demician A.T. Fomenko and G.V. Nosovskij. The books de-
scribed the work of a group of professional mathematicians,
led by Fomenko, who had considered the issues of ancient
and medieval chronology for more than 20 years, with fas-
cinating results. Using modern mathematical and statistical
methods,18 as well as precise astronomical computations,19

they arrived at the conclusion that ancient history was artifi-
cially extended by more than 1000 years. For reasons beyond
my understanding, historians are still ignoring their work.

Greek and Roman Counting System

Modern Greek Roman Modern Greek Roman

1 α I 25 κε XXV
2 β II 50 ν L
3 γ III 70 o LXX
4 δ IV 80 π LXXX
5 ε V 100 ρ C
6 ς VI 200 σ CC
7 ζ VII 500 φ D
8 η VIII 800 ω DCCC
9 θ IX 1000 ια M

10 ι X 10000 Mα X

20 κ XX 20 000 Mβ XX

24 κδ XXIV 100 000 M ι C

Table 1

But let us return to mathematics and to ancient Rome.
The Roman numeral system discouraged serious calculations.
How could the ancient Romans build elaborate structures
such as temples, bridges, and aqueducts without precise and
elaborate calculations? The most important deficiency of Ro-
man numerals is that they are completely unsuitable even for
performing a simple operation like addition, not to mention
multiplication, which presents substantial difficulties (see Ta-
ble 1).20 In early European universities, algorithms for mul-
tiplication and division using Roman numerals were doctoral
research topics. It is absolutely impossible to use clumsy Ro-
man numbers in multi-stage calculations. The Roman system
had no numeral “zero.” Even the simplest decimal operations
with numbers cannot be expressed in Roman numerals.

Just try to add Roman numerals:21

17 See [3].
18 See [4].
19 See [5].
20 Even in 1768, in the first edition of Encyclopædia Britannica,

there were some variations in the use of the Roman numerals. For ex-
ample, the symbol IIII was sometimes used instead of IV for the number
four.

21 Answer: MMMCCCXC. You can check your work with this online
Roman numeral calculator: http://www.naturalmath.com/tool2.html.

MCDXXV
+

MCMLXV,

or multiply:22

DCLIII
×

CXCIX.

Try to write a multiplication table in Roman numerals.
What about fractions and operations with fractions?

c©Copyright 2002
Gabriela Novakova

Despite all of these deficiencies, Roman numerals suppos-
edly remained the predominant representation of numbers in
European culture until the 14th century. How did the ancient
Romans succeed in their calculations, including complicated
astronomical computations? It is believed that in the 3rd
century, the Greek mathematician Diophantus was able to
find positive and rational solutions to the following system of
equations, called Diophantic today:

x3
1 + x2 = y3,

x1 + x2 = y.

According to historians, at the time of Diophantus, only
one symbol was used for an unknown, a symbol for “plus” did
not exist; neither was there a symbol for “zero.” How could
Diophantic equations be solved using Greek letters or Roman
numerals (see Table 1)? Can these solutions be reproduced?
Are we dealing here with another secret of ancient history that
we are not supposed to question? Let us point out that even
Leonardo da Vinci, at the beginning of the 16th century, had
troubles with fractional powers.23 It is also interesting that
in all of da Vinci’s works, there is no trace of “zero” and that
he was using 22/7 as an approximation of π—probably it was
the best approximation of π available at that time.24

It is also interesting to look at the invention of the loga-
rithm. The logarithm of a number x (to the base 10) expresses
simply the number of digits in the decimal representation of
x, so it is clearly connected to the idea of the positional num-
bering system. Obviously, Roman numerals could not have
led to the invention of logarithms.

Knowledge of our history timeline is important, and not
only for historians. If indeed the dates of antiquity are in-
correct, there could be profound implications for our beliefs

22 Answer: CXXMXCMXLVII.
23 Da Vinci made a mistake in his computations of the area of

a cross-section of a cube—he wasn’t able to express his result, which
contained the fractional power 3/2. See [8], F., p. 59.

24 See [9], p. 1.
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about the past, and also for science. Historical knowledge is
important to better understand our present situation and the
changes that take place around us. Important issues such as
global warming and environmental changes depend on avail-
able historical data. Astronomical records could have a com-
pletely different meaning if the described events took place
at times other than those provided by traditional chronol-
ogy. I trust that the younger generation will have no fear
of “untouchable” historical dogma and will use contemporary
knowledge to challenge questionable theories. For sure, it is
an exciting opportunity to reverse the subordinate role sci-
ence plays to history, and to create completely new areas of
scientific research.
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Garry Kasparov has been the chess world champion since
1985, when he won the title at the age of 22. In 1997, during
a historical chess challenge that made headlines all over the
world, he defeated IBM’s Deep Blue supercomputer. There
are many web sides devoted to Garry, but we recommend:

http://www.kasparovchess.com/.

A biography can be found at

http://www.chennaiweb.com/sp/chess/bio/garyk/.

The math professor’s six-year-old son knocks at the door of his
father’s study.

“Daddy,” he says. “I need help with a math problem I couldn’t
do at school.”

“Sure,” the father says and smiles. “Just tell me what’s both-
ering you.”

“Well, it’s a really hard problem: There are four ducks swim-
ming in a pond when two more ducks come and join them. How
many ducks are now swimming in the pond?”

The professor stares at his son in disbelief. “You couldn’t do
that?! All you need to know is that 4 + 2 = 6!”

“Do you think, I’m stupid?! Of course I know that 4 + 2 = 6.
But what does this have to do with ducks!?”

c©Copyright 2002
Sidney Harris

A visitor to the Royal Tyrell museum in Alberta asks a museum
employee:

“How old is the skeleton of that T-Rex?”

“Precisely 60 million and three years, two months, and 12 days.”

“How can you know that with such precision?”

“That’s easy. When I started working here, a sign said that the
skeleton was 60 million years old. And that was three years, two
months, and 12 days ago. . . ”

“What is π?”

A mathematician: “π is the ratio of the circumference of a circle
to its diameter.”

A computer programmer: “π is 3.141592653589 in double pre-
cision.”

A physicist: “π is 3.14159 plus or minus 0.000005.”

An engineer: “π is about 22/7.”

A nutritionist: “Pie is a healthy and delicious dessert!”

Q: How do you make one burn?

A: Differentiate a log fire!
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Mathematics: A Tool
for Questioning

by
Nassif Ghoussoub and
Klaus Hoechsmann

Garry Kasparov

In the preceding article, the man who
defeated the world’s best chess champions
and IBM’s formidable “Deep Blue” com-
puter has done π in the Sky an invaluable
favour: by using mathematics to examine
the world around him, past and present,
he is greatly contributing to our mission
of raising mathematical awareness, stimu-
lating analytical thinking, and encourag-
ing critical questioning of widely-held be-
liefs. Mathematics (Greek for “learning”)
should be cultivated as a tool for sys-
tematic questioning, our primary defense
against mumbo-jumbo and demagoguery.

Kasparov’s message is simple: “Do not accept authority
unquestioned—look for yourself.” The first authority he questions
is that of Edward Gibbon, whose Decline and Fall of the Roman
Empire is a monument not only to history but also to English
prose. But wherever numbers are involved, you can jump in and
at least check the arithmetic. Adding up the cohorts of infantry
and cavalry is probably not done by most readers of Gibbon, but
it is easy (9 times 555 equals 5 times 999, etc.) and fun. In the end
you come up with 6826 (Gibbon has five more, perhaps officers)
and have to multiply that by 30. No calculators are allowed: your
number lies just short of half-way between 6667 and 7000, hence
the total will come to about 205 000. To get from there to his
“standing force of 375 000,” Gibbon has to add 170 000 “atten-
dant auxiliaries,” almost one per soldier. Why so many? Did the
Romans never have government cutbacks? With one auxiliary for
every five soldiers (is that reasonable?) the total force would be
less than 250 000, the number given for Napoleon.

To play around with these numbers some more, you can try to
visualize how big a square one-quarter million men would occupy if
each man occupies one square meter. Or you can distribute them
on the 4000 miles of paved highway the Romans had (according
to Gibbon). How far apart would they stand? If the Empire
had 50 million inhabitants, that size of army would comprise one
percent of the male population. If their life expectancy was 50
years, how long would their military service have to be to arrive
at that number? As you can see, historical writings can provide
an almost endless source of such exercises. Why should arithmetic
and history always be taught separately?

Thomas R. Malthus

After wondering about the feasibility of
some of the Roman marvels reported by
Gibbon (for instance, the steel required
to equip each legionnaire with a “pilum”),
Kasparov’s curiosity turns to the work
of another famous Englishman, whom he
however does not name. In political circles,
that name invariably unleashes heated and
bitter debates, because its owner wrote in
1798 that “population increases in a ge-
ometric ratio, while the means of subsis-
tence increases in an arithmetic ratio.” We
are, of course, talking about Thomas R.
Malthus. What does he mean? Population

grows by perpetual multiplication (exponentially), while food
production grows only by repeated addition (linearly); in other
words, humanity is doomed!

Malthus does not leave it at these vague pronouncements, but
says in his Essay on the Principles of Population (Chapter 2) that
“population, when unchecked, goes on doubling itself every twenty-
five years,” after citing “the United States of America, where the
means of subsistence have been more ample, the manners of the
people more pure. . . ” The phrase “when unchecked” throws a big
spanner into the works: we are now at 200 years (eight doubling
periods after Malthus), but have not doubled the world population
of his time (about one billion) eight times; otherwise we’d now
be at 256 billion instead of “only” six. Going backward in time,
where Malthus would reduce the population by 50 percent every
25 years, similar nonsense would result. In working with doubling
or halving, it is convenient to remember that the 10th power of 2
is 1024. Going back in time 250 years (10 Malthusian doubling
times), he would go from one billion to one million—two more
such large steps (750 years in total), and he would arrive at Adam.
That’s why these calculations need the condition “unchecked.”

There are situations where this condition is almost satisfied. If
you take a culture of bacteria in plenty of nutrient solution—they
have no wars and do not practise birth control—you can observe
(almost) pure exponential growth. And in radio-active decay—
because atoms don’t make choices—you can see it in reverse: every
so many years (always the same number, called the “half-life”), the
remaining “population” of radio-active atoms is halved. For radio-
active carbon, the half-life is about 5700 years. When a plant or
animal ceases to take part in the great cycle of life, its carbon
content remains static, and the radio-active part of it decays with
that fixed half-life. So if you find a piece of wood with only one-
quarter the “typical” amount of radioactive carbon, you would
presume that it has been dead for about 11 000 years.

But let us get back to human populations, where growth is ap-
parently not “unchecked.” It does not help, in the long run, to as-
sume a greater doubling time: whatever length of step you choose,
after 30 such steps back in time, you’ll knock off nine zeroes, going
from the present six billion to a mere six individuals—the Gar-
den of Eden. In the medium run, you might observe something
resembling exponential growth—but don’t count on it. Look at
the recent past: in 1800 we were one billion, in 1935 we were two
billion, in 1975 we were four billion. The sad truth is that our
doubling time seems to be shrinking. Pretty soon, it will be at
the 25-year level assumed by Malthus—it looks as though the Old
Man was not pessimistic enough.

Kasparov’s inquisitiveness is not random but has a theme: ex-
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actly how long ago was it that the Romans had their Empire? At
first glance, this question is surprising (don’t we all know about
those 2000 years?), but on second thought it is entirely legitimate.
Anyone with a scientific bent of mind will put more trust in directly
accessible data (e.g., the movement of stars) than in stories told
by knights and monks—especially if these are vague and contra-
dictory. According to people who study old manuscripts, medieval
European record-keeping was a mess, and so it seems that some
scrupulous revision is in order. The same scientific spirit that al-
lows the question, however, compels us to question any answer—in
this case, the one proposed by Fomenko’s Moscow team. Since ev-
eryone seems to agree that time-keeping was fairly good from Cae-
sar until about 400 AD and then again since Galileo (at least!), we
have only about 1 200 possibly “sloppy” years to straighten out. If
Islamic history, which is “modern” compared to most others, turns
out to be as reliable as it looks, these uncertain years might shrink
to a mere 200. For instance, the idea suggested in the article by
Krawcewicz on page 12 of this issue, that “pagan” Egyptian fres-
coes could have been painted 600 years ago, would itself become
rather questionable, if it were shown that Egypt was solidly Is-
lamic at the time. That does not invalidate the author’s study—it
only shows that history is less certain than we sometimes think.
Until the dust has settled, it is advisable not to pass judgment.

If the Roman Empire is really so far removed from us in time,
why is it that Roman numerals were still in commercial use until
the 14th century? Before we throw our own guess into the de-
bate, let us look at the nature of these much maligned numerals.
How could anyone calculate with them? Well, how can anyone
compute “three hundred and seventy-six times two hundred and
thirty-seven.” You type these data into your pocket calculator
and press the “×” button, that’s how. You certainly would not
fill page after page with number words. Neither did the Romans.
They would load CCCLXXVI and CCXXXVII onto their counting
board or abacus and manipulate the pebbles and beads until they
had the result. We shall do such a multiplication, but first we’ll
look at addition and subtraction.

Figure 1

The counting board shown in Figure 1 is
divided into two vertical strips; the left one
is for subtraction and the right one is for
addition. Let’s do addition first. The num-
ber shown in the top-right field is MDCC-
CCLXV; the number immediately below is
MCCCCXXV. To add them, we just pile
everything together into the mess shown in
the third field on the right. To make it
readable, we have to reduce it—any five
“beads” on a line are converted to one
“button” in the space to the left of that
line, and any two buttons in a space are
converted to a single bead on the line im-
mediately to the left. The answer is MMM-
CCCLXXXX, as shown in the bottom right
field.

Note: we use the term “beads” to remind
you of an abacus; our “buttons” would
be found in the separate top compartment
(called “heaven” by the Chinese) of the
abacus. We are ignoring the medieval con-
vention of writing IV, XL, CD instead of
the longer but clearer IIII, XXXX, CCCC
notation used by the ancients.

In the subtraction on the left strip, the first number MCCC-
CXXV must be expanded in order to have enough beads on each
line and buttons in each space to allow the second number DCLIII,
depicted in the third field, to be subtracted. The expansion, which
is reduction in reverse, is shown in the second field from the top.
It need not be done all at once, but can be performed as needed
for subtraction. Answer: DCCLXXII.

The power and flexibility of the Roman numeral system is best
demonstrated in how it handles multiplication: because of the
numbers V, L, D, etc., you need not memorize any multiplication
table beyond five. But five itself is just 10 halves, and halving
is an easy operation. Doubling is another easy operation, and
quadrupling is just doubling twice—so the hardest multiplier is
three. If you do happen to know the 10-by-10 table, you can read
every line together with its preceding space as a single decimal
digit, and thus increase your speed.

Figure 2

The multiplication shown in Figure 2 is
CLXXXXVIIII times DCLIII. There are
four partial products (in the blue and yel-
low fields) corresponding to the four digits
of the multiplier: three, five (shifted), one
(shifted twice), and five (shifted twice). As
you pile all that into the first of the fields
marked green, something special happens
on the M-line: three sets of four. Since
there is no space for that many, you
turn them into a 12 (cf. blue beads)
and carry on. After reducing this, you
get CXXVMMMMDCCCCXXXXVII, as
shown in the bottom field. If you find
this too long, compare it to “one hun-
dred twenty-nine thousand nine hundred
and forty-seven.”

A Roman wine merchant would have
done this in his head: CLXXXXVIIII is
one less than CC, so double DCLIII to
MCCCVI, shift to CXXXDC, and sub-
tract DCLIII, and that’ll be LIII short of
CXXX—factus est.

After all of this, you must be dying to see a division, and here it
is: MMMMDCXXVIIII divided by XIII (the divisor is not entered
in). It goes just as you expect. Since XIII takes up two lines, you
look at the first two lines (plus spaces) of the number to be divided,
and you see XXXXVI, which can accommodate three times XIII.

Figure 3

So you write a III on the line where
your XXXXVI had its I. Then you
subtract III times XIII and are
left with VII, which is really DCC
in disguise. Then you repeat the
game, this time taking aim at what
looks like LXXII—and so on, al-
ways wandering toward the smaller
values on the right (see Figure 3).

To appreciate the ease and freedom of this simple gadget, you
owe it to yourself to try one. For starters, why not take a chess-
board and a supply of pennies? You can start your calculations
on the right or on the left, change direction when you spot an op-
portunity for an easy move—as long as you keep track of where
you are in the calculation, it cannot go wrong. You can add or
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subtract tokens to undo a lousy move—you never need an eraser.

The Indo-Arabic numeral system was supposedly introduced to
Europe in the early 13th century with a book called Liber Abaci
(book of the abacus) written by the widely travelled Leonardo da
Pisa (alias Fibonacci), himself no mean mathematician. Present-
day scholars say that it was known in the West much earlier—
though still regarded as a Levantine curiosity—but that the 13th
century introduction of paper from China, as a cheap medium for
writing, made it the system of choice for all auditors and tax-
collectors who wanted to see the details of every calculation.

The pen-on-paper computation with Indo-Arabic numerals—
including the famous zero (originally a punctuation mark)—made
it possible to check calculations for errors, but also penalized false
starts and other trivial mistakes with ugly and confusing erasures.
To avoid these, you had to follow certain very tight algorithms,
which to this day make elementary arithmetic an incomprehensi-
ble and unpleasant discipline to many people. As Scott Carlson
points out in the article preceding Kasparov’s, the paper method
makes little sense when a calculator is at hand—although mental
arithmetic is something he evidently likes. To build the bridge
between the two, how about re-introducing the counting board?

This ancient and user-friendly tool was still being used in Europe
long after people had begun writing numbers in the more compact
Indo-Arabic style. As late as 1550, a German textbook was pub-
lished by one Adam Ries, in which the multiplication shown above
would be written as 199 times 653 equals 129 947, but the interme-
diate steps would be left as unnamed patterns on the board. Even
the Chinese and Japanese use this style to write input and output
of their abacus work, and this would probably be the right way to
bridge the gap between mental arithmetic and the calculator.

In conclusion: the counting board survived (at least) until the
16th century, and for a while (we guess) just carried the Roman
numerals along with it. The fact that they are harder to falsify
may also have helped.

The last major question raised by Kasparov concerns Diophan-
tus of Alexandria. This Greek working in Roman times, considered
the “father” of number theory, is indeed an enigma for anyone in-
terested in chronology—the guesses about his dates range from
150 BC to 350 AD. If he lived that long ago, at a time when
equations were allowed only one unknown (called the “arithm”),
how could he have solved equations like “y cubed minus x cubed
equals y minus x”? Here is what the Master himself says in Book
IV, Problem 11 of his Arithmetica, according to the French trans-
lation by Paul Ver Eeke (1959), here rendered in English:

“To find two cubes having a difference equal to the difference of
their sides. Suppose the sides to be 2 arithms and 3 arithms. Then
the difference of the cubes with these sides is 19 cube arithms, and
the difference of their sides is 1 arithm. Consequently, 1 arithm
equals 19 cube arithms, and the arithm cannot be rational, because
the ratio between these quantities is not like that of one square to
another. We are thus led to look for cubes such that their differ-
ence is to the difference of their sides as one square number is to
another.”

If his first arithm was x, he then boldly grabs another arithm—
let’s call it z—and imagines cubes with sides (z + 1)x and zx,
respectively. A bit of standard algebra shows (3zz+3z+1)xx = 1,
and therefore 3zz+3z+1 should be a square number. Diophantus
assumes it to be the square of (2z−1)—how does he get away with

that?—and then finds z = 7. He now repeats his initial argument
with 7 arithms and 8 arithms, and finds the arithm to be 1/13. In
our language: x = 7/13 and y = 8/13.

Is this a solution? Yes. Is it the general solution? No. But it
points to a technique: had he taken (z + 2)x and zx, he would,
in the same way, have obtained 6zz + 12z + 8 and concluded that
it should be twice a square number. Setting it equal to twice the
square of (3z − 2) would have yielded z = 3 and the arithm 1/7.
In modern language: x = 3/7 and y = 5/7. There is method in
this madness. Can you discover it?

We’ve discussed enough for today, but this is not the end of
Kasparov’s intellectual challenges to scholars and his questioning
of widely accepted theories. They certainly have taken us on an
interesting journey—and left us much to ponder.

If you are interested in learning more about issues relating to
chronology, we invite you to visit the discussion forum at the web
site

http://www.revisedhistory.org/forum.

Garry Kasparov, the author of the article “Mathematics of the
Past” on page 5, will check this site periodically and try to re-
spond to your questions. Submissions will be moderated before
publication in the Forum.

Q: What does the math PhD with a job say to the math PhD
without a job?

A: “Paper or plastic?”

c©Copyright 2002
Wieslaw Krawcewicz
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Decoding Dates
from

Ancient Horoscopes
by

Wieslaw Krawcewicz

Mysterious celestial objects visible in the sky have always fas-
cinated and inspired humanity. Even today, in this age of super-
rationality and high technology, in spite of its evident ground-
lessness, astrology seems to preoccupy many people who strongly
believe in the supernatural influence of the planetary movements
on human lives. Since ancient times, the sky has been believed to
be a gate to the Heavens. The changing positions of the planets,
the moon, and the sun were seen as expressions of a divine power
influencing human existence on Earth. Great importance was at-
tributed to all celestial phenomena, in particular to horoscopes.
Regardless of the imaginary significance attributed to horoscopes,
we should remember that they are also a record of dates written by
means of a cosmic calendar. Today, we can decode ancient horo-
scopes and, using mathematical computations, discover the dates
that were commemorated.

But what exactly is a horoscope? When we look at the
sky at night, we get the impression the Earth is surrounded by an
enormous sphere filled with stars. Although this celestial sphere
seems to be revolving slowly around us (an illusion caused by the
daily revolution of the Earth), the stars always appear in the same
configurations (called constellations), at the same fixed positions
on the celestial sphere. However, there are also other celestial
objects, which seem to be “travelling” across the celestial sphere.
The moon is one of them, but there are also five planets that can
be observed with the naked eye. These planets are Jupiter, Saturn,
Mars, Venus, and Mercury. Of course, although invisible at night,
the sun is also moving across the sky.

The planets, including the moon and sun, were in old times
called travelling stars, but today we simply call them the seven
planets of antiquity. It appears to an Earth-based observer that in
the course of one year, the sun completes a full revolution around a
large circle on the celestial sphere. This circle is called the ecliptic.
The planets and the moon are always found in the sky within a
narrow belt, 18◦ wide, centered on the ecliptic, called the zodiac.
The area around it is called the zodiacal belt. The zodiacal belt
is a celestial highway where the movement of the planets, the sun,
and the moon takes place when observed from the Earth. Twelve
constellations along the ecliptic comprise the zodiac belt. Their
familiar names are Aries, Taurus, Gemini, Cancer, Leo, Virgo,
Libra, Scorpio, Sagittarius, Capricorn, Aquarius, and Pisces. Each
of the 12 zodiac constellations is located in a sector 30◦ long, on
average (see Figure 1).

The key concept in astrology is a horoscope, which is a chart
showing the positions of the planets in the sky with respect to the
zodiac constellations. In ancient times, people attributed great
importance to these planetary positions and unknowingly encoded
in horoscopes the exact dates related to astronomical events.

Figure 1
Celestial sphere with the solar system inside. To an Earth-based
observer, the planets, the sun, and the moon appear on the zodiacal
belt. Their positions are changing continuously.

An astronomical situation shown in a horoscope is quite unique.
At any time, there are 12 possible zodiac constellations, where each
of the seven “planets” may appear (see Figure 1). The positions
of the moon, the sun, Mars, Jupiter, and Saturn are independent
of each other. However, due to the inner orbits with respect to
the Earth’s orbit, the visual angle distance from Mercury to the
sun cannot be larger than 28◦, and the angle distance from Venus
to the sun must be smaller than 48◦. This means that for each
fixed position of the sun in the zodiac, there are only three possible
positions for Mercury and five possible positions for Venus. It is
not difficult to compute that there are exactly

12 × 12 × 12 × 12 × 12 × 3 × 5 = 3 732 480

different horoscopes. Since an average horoscope remains in the
sky for about 24 hours, there are about 365 different horoscopes
every year. Therefore, a specific horoscope should reappear only
after 10 000 years, on average. However, in reality, a horoscope
may reappear more often. The existence of so-called false periods
has been observed by researchers.1 It appears that two or three
repetitions of the same horoscope are possible in a period of about
2 600 years, but later such a horoscope disappears for many dozens
of thousands of years.

With the use of modern computational methods, it is possible
to calculate all of the dates that could correspond to such a horo-
scope. If other astronomical information is also available from the
horoscope (such as the order of the planets or their visibility), it
is often possible to eliminate all of the dates except one, which is
exactly the date of the horoscope. In this way, mathematics can
be a very powerful tool in revealing the mysteries of the ancient
world.

1 See [5], Vol.6.
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There are many ancient representations of zodiacs containing
symbolic representations of horoscopes. In particular, some Egyp-
tian zodiacs, which use specific ancient symbols to illustrate astro-
nomical objects, can be analyzed. It would be difficult to disagree
that this is an exciting idea, as it could lead us to the exact dates
corresponding to ancient Egyptian history!

Let me include some examples of Egyptian zodiacs. All of these
zodiacs are discussed in detail in an upcoming book entirely de-
voted to the astronomical dating of the ancient Egyptian zodiacs.2

Figure 2 shows an Egyptian zodiac found on the ceiling in an an-
cient Egyptian temple in Denderah. It is called the Round Den-
derah zodiac.

Figure 2

A drawing of the Round Denderah zodiac made during the
Napoleonic expedition to Egypt in 1799.3

A second zodiac found in the same temple in Denderah is called
the Long Denderah zodiac (see Figure 3).

A drawing of another Egyptian zodiac is shown in Figure 4.
This zodiac was found in the main hall of a huge temple in the
ancient city of Esna, located on a bank of the river Nile. We will
call it the Big Esna zodiac.

In the same city of Esna, another zodiac was found by the
Napoleonic army in a much smaller temple (see Figure 5). We
will call it the Small Esna zodiac, but this name has nothing to do
with the size of the zodiac itself.

There are many more Egyptian zodiacs containing horoscopes,
but it is not possible to discuss them all in such a short article.4

2 See [1].
3 Picture taken from [2], A. Vol. IV, Plate 21.
4 For example, there are many zodiacs found inside ancient Egyptian

tombs. Read more about it in [1].

Figure 3

A drawing of the Long Denderah zodiac from the temple in Den-
derah in Egypt.5 Colour annotations were added to indicate con-
stellations (red), planets (yellow), and other astronomical symbols
(blue or green).

5 Picture taken from [2]. Annotations were made by A.T. Fomenko,
T.N. Fomenko, W.Z. Krawcewicz, and G.V. Nosovskij [1].
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Figure 4

The Big Esna zodiac.6 The
zodiac constellations are
marked in red, the planets
in yellow, and the other
astronomical symbols in blue
and green.

Figure 5

Drawing taken from the
Napoleonic Album7 of the
Small Esna zodiac.

Egyptian zodiacs should be seen as symbolic representations of

6 Picture taken from [2], A. Vol. I, Plate 79. Colour annotations
were made by A.T. Fomenko, T.N. Fomenko, W.Z. Krawcewicz, and
G.V. Nosovskij [1].

7 Picture taken from [2], A. Vol. I, Plate 87.

astronomical objects inside the zodiacal belt. The actual decoding
of the astronomical symbolism of such a zodiac is rather compli-
cated. In Figure 6, we show a drawing of the Round Denderah
zodiac taken from the book [1], where it is carefully analyzed and
decoded.

Figure 6

Decoded astronomical meaning of the Round Denderah zodiac. The
zodiac constellations are marked in red, the planets in yellow, and
the other astronomical symbols in blue and green.

In this representation, colours are used to distinguish figures
of different astronomical meaning. The red figures are the zodiac
constellations, which can be easily recognized because their ap-
pearance has remained largely unchanged to present times. The
yellow figures are the planets. Some are marked by hieroglyphic in-
scriptions, but it is generally not an easy task to determine exactly
which planets are represented by these symbols.

The blue and green figures represent other astronomical sym-
bols. The blue colour indicates the astronomical meaning of the
figure was successfully decoded, and the green colour indicates the
meaning of the figure was not completely understood.

The final decoding was achieved through a complicated elim-
ination process,8 in which all possible variants were considered.
For each of the dates obtained, all of the available astronomical
data was carefully verified, and only solutions satisfying all of the
required conditions were considered.

It was found that the figures shown on this zodiac indicate that:
the moon was in Libra; Saturn was in either Virgo or Leo; Mars
was in Capricorn; Jupiter was in either Cancer or Leo; Venus was
in Aries; and Mercury and the sun were in Pisces.

Dating of this zodiac was done using the astronomical soft-
ware HOROS, which was developed by Russian mathematician

8 See [1].
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G.V. Nosovskij, based on an algorithm used by the French as-
tronomers J.L. Simon, P. Bretagon, J. Chapront, M. Chapront,
G. Francou, and J. Laskar, in an astronomical program called
PLANETAP.9

This software, together with sample input files and brief instruc-
tions, is available at the π in the Sky web site:

http://www.pims.math.ca/pi/.

The results presented in [1] are most intriguing. The dates ob-
tained are as follows:

• Round Denderah zodiac: morning of March 20, 1185
A.D.

• Long zodiac: April 22–26, 1168 A.D.

• Big Esna zodiac: March 31–April 3, 1394 A.D.

• Small Esna zodiac: May 6–8, 1404 A.D.

Of course, these dates completely contradict the chronology of
ancient Egypt and have created a controversy regarding the age of
the ancient Egyptian monuments. But still, the results stand for
themselves. Clearly more research is needed before final conclu-
sions can be drawn.
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or you would like to share your opinion, send your email directly
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A statistics professor plans to travel to a conference by airplane.
When he passes the security check, a bomb is discovered in his
carry-on baggage. Of course, he is hauled off immediately for
interrogation.

“I don’t understand it!” the interrogating officer exclaims.
“You’re an accomplished professional, a caring family man, a pillar

9 See [4].

of your parish—and now you want to destroy all that by blowing
up an airplane!”

“Sorry,” the professor interrupts him. “I never intended to blow
up the plane.”

“So, for what reason did you try to bring a bomb on board?!”

“Let me explain. Statistics show that the probability of a bomb
being on an airplane is 1/1000. That’s quite high if you think
about it—so high that I wouldn’t have any peace of mind on a
flight.”

“And what does this have to do with you bringing a bomb on
board?”

“You see, since the probability of one bomb being on my plane
is 1/1000, the chance that there are two bombs is 1/1 000 000. So,
if I already bring one, I am much safer. . . ”

c©Copyright 2002
Sidney Harris

A physics professor conducting experiments has worked out a
set of equations that seem to explain his data. Nevertheless, he
is unsure if his equations are really correct and therefore asks a
colleague from the math department to check them.

A week later, the math professor calls him: “I’m sorry, but your
equations are complete nonsense.”

The physics professor is, of course, disappointed. Strangely,
however, his incorrect equations turn out to be surprisingly accu-
rate in predicting the results of further experiments. So, he asks
the mathematician if he was sure about the equations being com-
pletely wrong.

“Well,” the mathematician replies, “they are not actually com-
plete nonsense. But the only case in which they are true is the
trivial one in which the time variable is supposed to be a non-
negative real number. . . ”

A physicist, a mathematician, and a computer scientist discuss
which is better: a husband or a boyfriend.

The physicist: “A boyfriend. You still have freedom to experi-
ment.”

The mathematician: “A husband. You have security.”

The computer scientist: “Both. When I’m not with my hus-
band, he thinks I’m with my boyfriend. When I’m not with my
boyfriend, it’s vice versa. And I can be with my computer without
anyone disturbing me. . . ”
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“Wasn’t yesterday your first wedding anniversary? What was it
like being married to a mathematician for a whole year?’

“She just filed for divorce. . . ”

“I don’t believe it! Did you forget about your anniversary?”

“No. Actually, on my way home from work, I stopped at a
flower store and bought a bouquet of red roses for my wife. When
I got home, I gave her the roses and said ’I love you’.”

“So, what happened?!”

“Well, she took the roses, slapped them around my face, kicked
me in the groin, and threw me out of our apartment. . . ”

“I can’t believe she did that!!”

“It’s all my fault. . . I should have said ’I love you and only you’.”

“Statistics show that most people are deformed!”

“How is that?”

“According to statistics, an average person has one breast and
one testicle. . . ”

A mathematician, a physicist, and an engineer are asked to test
the following hypothesis: All odd numbers greater than one are
prime.

The mathematician: “Three is a prime, five is a prime, seven
is a prime, but nine is not a prime. Therefore, the hypothesis is
false.”

The physicist: “Three is a prime, five is a prime, seven is a
prime, nine is not a prime, eleven is a prime, and thirteen is a
prime. Hence, five out of six experiments support the hypothesis.
It must be true.”

The engineer: “Three is a prime, five is a prime, seven is a
prime, nine is a prime. . . ”

Psychologists subject an engineer, a physicist, and a
mathematician—a topologist, by the way—to an experiment:
Each of them is locked in a room for a day—hungry, with a can of
food, but without an opener; all they have is pencil and paper.

At the end of the day, the psychologists open the engineer’s
room first. Pencil and paper are unused, but the walls of the room
are covered with dents. The engineer is sitting on the floor and
eating from the open can: He threw it against the walls until it
cracked open.

The physicist is next. The paper is covered with formulas, there
is one dent in the wall, and the physicist is eating, too: he calcu-
lated how exactly to throw the can against the wall, so that it
would crack open.

When the psychologists open the mathematician’s room, the
paper is also full of formulas, the can is still closed, and the math-
ematician has disappeared. But there are strange noises coming
from inside the can. . .

Someone gets an opener and opens the can. The mathematician
crawls out. “Darn! I got a sign wrong. . . ”

Isn’t math poetic?

∫ 3√3

1

v2 dv cos

(

3π

9

)

= log 3
√

e.

In words:
The integral v squared dv

From 1 to the cube root of 3
Times the cosine

Of 3π over 9
Is the log of the cube root of e.

When the logician’s little son refused again to eat his vegeta-
bles for dinner, the father threatened him: “If you don’t eat your
veggies, you won’t get any ice cream!”

The son, frightened at the prospect of not having his favourite
dessert, quickly finished his vegetables.

What happened next?

After dinner, impressed that his son had eaten all of his vegeta-
bles, the father sent his son to bed without any ice cream. . .

Q: Why does a chicken cross a Möbius strip?
A: To get to the same side.

Q: How do you call a one-sided nudie bar?
A: A Möbius strip club!

c©Copyright 2002
Sidney Harris

A western military general visits Algeria. As part of his pro-
gram, he delivers a speech to the Algerian people: “You know, I
regret that I have to give this speech in English. I would very much
prefer to talk to you in your own language. But unfortunately, I
was never good at algebra. . . ”

Q: What do you call the largest accumulation point of poles?
A: Warsaw!

A math professor is talking to her little brother who just started
his first year of graduate school in mathematics.

“What’s your favourite thing about mathematics?” the brother
wants to know.

“Knot theory.”
“Yeah, me neither!”
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Solar Eclipses:
Geometry,

Frequency, Cycles
by

Hermann Koenig†

Total solar eclipses are spectacular shows in the sky, in par-
ticular, if they occur on a bright day around noon. In a narrow
band on Earth, the moon completely obscures the sun and the
solar corona becomes visible. Sun and moon both appear to the
observer on Earth to subtend an angle of roughly θ = 1

2

◦
, even

though the radius of the sun is 400 times larger than that of the
moon. By pure chance, the sun is also about 400 times further
away from the Earth than the moon. The values are

θS ≈ 2 sin
θS

2
=

2R

D
, θM ≈ 2 sin

θM

2
=

2r

d
(in radians).

Notation Value Meaning

R 696 000 km Radius of the sun

r 1 738 km Radius of the moon

D 149 600 000 km Distance from the sun
to the Earth (mean value)

d 384 400 km Distance from the moon
to the center of the Earth
(mean value)

θS(θM ) Apparent angle of the sun (moon),
as seen from the surface of
the Earth

SUN

MOON EARTH

R
r θ

Figure 1

Angles of the sun and the moon (not to scale).

† Hermann Koenig is a Professor of Mathematics at Christian-
Albrechts University in Kiel, Germany. Visit his web site at
http://analysis.math.uni-kiel.de/koenig/ or send him an email at
hkoenig@math.uni-kiel.de.

Since R
r

≈ 400 ≈ D
d

, we see that θS ≈ θM . The sun is at one
focus of the counterclockwise elliptical orbit of the Earth around
the sun. Thus, the distance D between the sun and the Earth
actually varies between 147 100 000 km (perihelion, which occurs
each year around January 3) and 152 100 000 km (aphelion, which
occurs around July 4). The moon’s distance from the center of the
Earth varies even more percentage-wise, between 357 300 km and
406 500 km (in the new moon position). Thus, the actual values
of the angles θS and θM range as follows:

0.524◦ ≤ θS ≤ 0.542◦, 0.497◦ ≤ θM ≤ 0.567◦,

with mean values over time of θS = 0.533◦ and θM = 0.527◦. If
the moon does not cover the sun completely, an annular or partial
eclipse may result.

SUN
MOON

R
r d d

s

EARTH
EARTH

T
A

EARTH

P

penumbra

umbra

Figure 2

Three positions of Earth: Total (T), Annular (A), and Partial (P)
eclipses.

Figure 2 illustrates the positions of the sun, moon, and Earth
during solar eclipses, though not to scale. They are in line, with
the moon in the new moon position. The very narrow ( 1

2

◦
wide)

shadow cone of the moon, the umbra, has its vertex at a distance s
from the moon in the general direction of the Earth. We calculate,
looking at Figure 2, that

r

s
=

R

s + D − d
, s =

(D − d)r

R − r
≈ Dr

R
≈ D

400.5
;

hence
367 300 km ≤ s ≤ 379 800 km.

Thus, depending on the moon’s distance, the Earth’s surface can
be on either side of the umbral vertex (“shadow boundary”). In
position T , for d < s, a total solar eclipse occurs. If d is larger,
d > s, the Earth is in position A, in the inverted umbral cone and
the observer on Earth sees an annular eclipse; the moon obscures
the central part of the sun but not the fringes. If the Earth is in
the penumbra, a partial eclipse occurs.

SUN

EARTH

NODE

ORBIT OF MOON

NODAL LINE

ECLIPTIC

MOON

N

β
α

i

Figure 3

Sun, Earth, and moon: Angles α and β have to be small in the case
of an eclipse (section of the Earth perpendicular to the ecliptic).

Shouldn’t there then be a solar eclipse at every new moon, one
every lunar month, after Tlun = 29.531 days (on average)? This
would be the case if the moon were to orbit the Earth in the
ecliptic (the plane of Earth’s elliptical movement around the sun).
However, the orbital planes are inclined to each another by i =
5.14◦. They intersect along the nodal line (see Figure 3). Solar
eclipses occur when the moon crosses this line in the decreasing

17



or increasing node (north to south or south to north), or is close
to the node when the nodal line points toward the sun: eclipses
require the moon to be in or near the ecliptic (thus the name!).
If the moon is not close to either node, it will be too far north or
south of the ecliptic; its narrow shadow cone will miss the Earth.
Let β be the angle between the moon–Earth and sun–Earth lines
in the new-moon position. For β > 0.95◦, the center of the moon
is more than

0.95◦ × π

180
× 384 000 km ≈ 6370 km = R0

away from the ecliptic. Because of the sun’s large distance from
the moon and the Earth, the central line of the moon’s shadow is
practically parallel to the ecliptic and will miss the Earth, which
has the radius R0. Therefore, no central (i.e., either total or annu-
lar) eclipse will occur. The angle β is directly related to the angle α
between the moon–Earth line and the nodal line in the moon’s or-
bital plane. Figure 4 and a little bit of spherical trigonometry give
the formula

sin α =
sinβ

sin i
.

SUN EARTH

NODE

MOON

α
β

i NODAL LINE

Figure 4

The spherical triangle: node, moon, sun (positions and angles as
in Figure 3).

Therefore, if |α| ≤ 10.5◦, then |β| is ≤ 0.95◦, and a central
eclipse will occur (slightly different values are possible since D
and d vary). Similarly, for |β| ≤ 1.4◦ and |α| ≤ 16◦, at least
partial eclipses will occur. In this case, in the above argument the
Earth’s radius R0 has to be replaced by R0 plus the fairly large
radius (more than 3000 km) of the penumbra, giving the larger
bound for beta.

�

�

A

B

C

Fixed Stars

Fixed Stars

EARTH

EARTH

Sun

Figure 5

Lunar and sidereal months: (A) new moon, (B) one sidereal month
later, and (C) one lunar month later (distances and angles are not
to scale).

It takes the moon only Tsid = 27.322 days on average to orbit
the Earth once with respect to the fixed stars. This is the sidereal
month. During this time, the Earth progresses in its orbit around
the sun. Hence, the moon needs more time to move from one new
moon position to the next; this is the previously mentioned lunar
month Tlun (see Figure 5). The sidereal and lunar months are
related as follows:

1

Tsid
=

1

Tlun
+

1

J
,

where J = 365.242 days, the length of the (tropical) year.

The period of time the moon needs to move from one descending
node to the next, the so-called draconic month Tdr = 27.212 days,
is even shorter then the sidereal month since the nodal line rotates
clockwise once every 18.62 years around the Earth, in a gyroscopic
effect caused by the sun and Earth. So how often do eclipses occur?
In one draconic month’s orbit, four angular sectors of 10.5◦, two
on each side of the two nodes, are favourable for central eclipses if
the moon is positioned there. Hence, on average, a total or annular
solar eclipse will happen every

360◦

4 × 10.5◦ × 27.21 days = 233 days

somewhere on Earth, which means 156 per century. As for (at
least) partial eclipses, the frequency is one every

360◦

4 × 16◦ × 27.21 days = 153 days,

or 238 per century. These numbers agree with long-time statistics
of solar eclipses. Since θM < θS holds on average, annular eclipses
slightly outnumber total eclipses: of those 156 central eclipses,
about 65 are total, 78 are annular, and 13 are mixed. Total eclipses
are more likely to occur in summer (June to August) since the sun
is close to its aphelion and appears to us at the smallest possible
angle. Annular eclipses dominate during the northern-hemisphere
winter. Since the Earth’s axis is tilted toward the sun during the
summer, total eclipses are slightly more frequent in the northern
hemisphere of the Earth than in the southern; the opposite holds
true for annular eclipses.

�

�
�

MOON ORBIT

ECLIPTIC

WEST

EAST

16◦

16◦

16◦

16◦

Figure 6

The “danger zone” of an eclipse near a node: the moon passing
the sun near the descending node (view fixing the node).

From the Earth, let us look toward a node of the moon’s orbit
and the ecliptic, when the sun and the moon are in the ±16◦

sectors around the node. The (say) descending node points every

Jecl =
365.242

1 + 1/18.62
days = 346.62 days

toward the sun: this is the ecliptic year. Here 365.242 days is the
length of the (tropical) year. Therefore, the sun needs

2 × 16◦

360◦ × 346.62 days = 30.8 days

to pass the “danger zone” of an eclipse. Since this is more than a
lunar month, the moon will overtake the sun at least once, maybe
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twice, during this time. This results in one or two solar eclipses
every half ecliptic year. We conclude, therefore, that every year
there are at least two and at most five solar eclipses (total, annular
or partial) per year somewhere on Earth. The fifth eclipse may
occur in the “leftover” 18.62 days (365.24− 346.62), although this
is a rather rare event, happening the next time in the year 2206.
Typically, one total and one annular eclipse or two or four partial
eclipses occur in a given year; this being the case, for example, in
2002, 2004, and 2000, respectively.

At a specific location, say Edmonton, Calgary, or Vancouver, a
total solar eclipse is quite rare, with one happening about every
390 years on average. This figure, however, is subject to large
variations. For example, a coastal strip in Angola is the scene
of two total solar eclipses in 2001 and 2002, whereas London did
not experience any total solar eclipses between 878 A.D. and 1715
(when Halley produced the first eclipse map).

Total solar eclipses are favoured if the moon’s distance d is small
(close to its perigee) and the sun’s distance D is large (close to its
aphelion). A small sun is covered by a large moon. The time be-
tween two successive perigees of the moon (closest distance points)
is the anomalistic month Tan = 27.555 days. It is larger than the
draconic month since the perigee moves slowly in a counterclock-
wise direction under the influence of the sun, completing one rota-
tion in 8.85 years. Interestingly, there are good rational approxi-
mations of the ratios of these different types of months: 223 lunar
months are almost the same as 242 draconic months, 19 ecliptic
years, or 239 anomalistic months. This is the Saros period S:

S = 223 Tlun = 6585.32 days,
242 Tdr = 6585.36 days,
19 Jecl = 6585.78 days,

239 Tan = 6585.54 days.

Figure 7

Paths of nine successive total solar eclipses in the Saros series 145.

In years, S is 18 years plus 10 1
3

or 11 1
3

days, depending on the
number of leap years during this time. Solar eclipses thus tend to
repeat after the period S: the moon is again in the new moon po-
sition and in the same type of node (decreasing/increasing) point-
ing toward the sun, the Earth–sun distance is about the same
after almost 18 years and the Earth–moon distance is very sim-
ilar after 239 anomalistic months. This means that the type of
eclipse typically is the same (annular, total, or partial): the lat-
itude of the tracks of central eclipses on Earth is only slightly
shifted north/south, but the longitude of the next eclipse in a
Saros cycle is 0.32 × 360◦ = 115◦ further to the west. After three
such periods, 54 years and one month, a very similar eclipse will
reappear in almost the same longitude, latitude being somewhat
shifted north or south. Since the above periods do not coincide
perfectly, any such Saros series of eclipses eventually ends after
about 72 eclipses, which move slowly in about 1 300 years from
the south to the north pole or vice-versa. Figure 7 shows the paths
of nine successive total solar eclipses in the Saros series 145; the
calculations were done by Fred Espenak (NASA/GSFC).

So when is the next total solar eclipse in Western Canada? You
will have to wait until the afternoon of August 22, 2044, when
an eclipse will be experienced in Edmonton and Calgary, with the
sun being at an altitude of 10◦ above the horizon. This eclipse
will have predecessors in its Saros series in 2008 in Siberia/China
(around the time of the Beijing Olympic Games) and 2026 in the
North Atlantic and Spain. The last total eclipse in Edmonton was
in 1433—a gap of more than 600 years, although in 1869 there was
one visible just south of the city area. Banff, Calgary, Ohio, and
Virginia will experience another total eclipse in September 2099.
This one will have its Saros predecessors in 2045 in the U.S., track-
ing from Oregon to Florida, and in 2009 in Shanghai, China and in
the western Pacific. The 2009 occurrence will be the most massive
total eclipse of the 21st century, with a totality phase lasting up
to 6 2

3
minutes. The 1999 eclipse in central Europe will be followed

in its Saros series 145 by a total eclipse in August 2017 in the
U.S., tracking from Oregon to South Carolina. This is the next
total solar eclipse in the U.S.; its totality phase will last up to 2 1

2

minutes.

A mathematician has spent years trying to prove the Riemann
hypothesis, without success. Finally, he decides to sell his soul to
the devil in exchange for a proof. The devil promises to deliver a
proof within four weeks.

Four weeks pass, but nothing happens. Half a year later, the
devil shows up again—in a rather gloomy mood.

“I’m sorry,” he says. “I couldn’t prove the Riemann hypothesis
either. “ But”—and his face lightens up—“I think I found a really
interesting lemma. . . ”

“The number you have dialed is imaginary. Please, rotate your
phone by 90 degrees and try again. . . ”
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Noether
Volker Runde†

The highest honour that can be bestowed upon a mathemati-
cian is not the Fields Medal—it is becoming an adjective: Euclid
was immortalized in Euclidean geometry; Descartes’ memory is
preserved in Cartesian coordinates; and Newton lives on in New-
tonian mechanics. Emmy Noether’s linguistic monument is the
Noetherian rings.1 To my knowledge, Emmy Noether is still the
only female mathematician ever to have received this honour, and
she definitely was the first.

Emmy Noether as
young woman.

Amalie “Emmy” Noether was born on
March 23, 1882, in the city of Erlangen, in
the German province of Bavaria. She was
the first child of Max Noether and his wife
Ida, née Kaufmann. The math gene ran in
her family—her father was a math profes-
sor at the University of Erlangen, and her
younger brother Fritz would later become
a mathematician, too.

Getting a real education was not easy
for a woman in those days. In order to be
formally enrolled at a German university,
you needed (and still need) the Abitur, a
particular type of high-school diploma, and
in those days, there were no schools that
allowed girls to graduate with the Abitur.

Emmy attended a Höhere Töchter–Schule in Erlangen, a school
that provided the daughters of the bourgeoisie with an educa-
tion that was deemed suitable for girls (i.e., with an emphasis on
languages and the fine arts). Science and mathematics were not
taught in any depth. After graduation in 1897, Emmy continued
to study French and English privately and, three years later, she
passed the Bavarian state exam that allowed her to teach French
and English at girls’ schools.

Instead of working as a language teacher, Emmy spent 1900 to
1903 auditing lectures at the University of Erlangen in subjects
such as history, philology, and—of course!—mathematics. During

† Volker Runde is a professor in the Department of Math-
ematical Sciences at the University of Alberta. His web site is
http://www.math.ualberta.ca/∼runde/runde.html and his e-mail is
vrunde@ualberta.ca.

1 I won’t attempt to explain what they are, but you will encounter
them when you take your first course in abstract algebra.

the same period, she also started preparing for the Abitur exam.
In July 1903, Emmy obtained her Abitur. Fortunately, at about
the same time, women who had the Abitur were allowed to enroll
officially at Bavarian universities. After a year at Göttingen, she
enrolled at Erlangen in 1904, where she obtained her doctorate in
1907. Although, at that time, it was already quite an accomplish-
ment for a woman to obtain a doctorate at all, her thesis did little
to indicate her future stature as a mathematician. Later in life,
Emmy herself referred to her thesis in terms such as “Rechnerei,”2

“Formelgestrüpp,”3 and even “Mist.”4

Emmy Noether as a
budding mathemati-
cian.

Having received her doctorate, Emmy
continued working as a mathematical re-
searcher in Erlangen, without a position
and, of course, without pay. Nevertheless,
in the following years she built a reputa-
tion as mathematician, and in 1909, she
was the first woman invited to speak at
the annual congress of the German Math-
ematical Association. In 1915, the mathe-
maticians Felix Klein and David Hilbert in-
vited her to join them at Göttingen, in the
province of Prussia. To say that Göttingen
was the center of the mathematical world
in those days would be an understatement.
From the 19th century to the early 1930s,

Göttingen simply was the mathematical world. Needless to say,
Emmy went.

Informal photo of
Emmy Noether.

The invitation to Göttingen was not a
job offer. There were serious legal ob-
stacles to becoming a professor. In Ger-
many, a doctorate is not sufficient quali-
fication to become a professor—it is nec-
essary to obtain the Habilitation, which is
a kind of second, more demanding doctor-
ate. Without doubt, Emmy Noether was
a strong enough mathematician to obtain
it, but Prussian law at that time admitted
only males as candidates for the Habilita-
tion. When Emmy, supported by David
Hilbert, nevertheless filed for her Habilita-
tion, the Prussian Ministry of Culture in-
tervened and forbade it. Despite this set-

back, she started teaching at Göttingen in 1915, albeit without pay
and not under her own name—officially, Hilbert was the instructor,
and she only assisted him.

In 1919, many things changed in Europe. In Germany, the
monarchy was overthrown. For the first time, women had the
right to vote, and Emmy Noether could finally file for the Habil-
itation without legal problems. This didn’t mean that suddenly
everything became easy for her (or for other women at German uni-
versities). Her Habilitation had to be approved by the university’s
senate. The very thought of a woman receiving the Habilitation
stirred a heated debate in the senate. “If we grant her the Habil-
itation,” her opponents argued, “then she might one day become
a professor, and if she becomes a professor, she might be elected
into the university’s senate, and the idea of a woman sitting in
the senate is so abhorrent that it must not be allowed to happen.”

2 mere computations
3 shrub of formulas
4 manure
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I’m not kidding—such arguments were seriously brought forward
against Emmy Noether’s Habilitation. According to legend, it was
David Hilbert who ended the debate in the senate with the mem-
orable phrase: “Meine Herren! Der Senat ist keine Badeanstalt!”5

As the first woman at a German university, Emmy Noether was
granted the Habilitation in mathematics and could finally lecture
under her own name (but still without pay).

In 1922, the University of Göttingen granted Emmy Noether the
title of Extraordinary Professor. The extraordinary thing about
this professorship was that it gave Emmy the right to call herself
a professor, but did not come with any salary. Until 1921, Max
Noether had financially supported his daughter. When he died,
her financial situation became tight. In order to prevent Emmy
from becoming destitute, the university finally gave her a paid
teaching assignment in 1923. For the first time in her life, at age
41, Emmy Noether, one of the leading mathematical researchers
in Germany (if not in the world), had an income of her own.

Emmy Noether in Göttingen with friends and colleagues
in the 1920s.

For the next 10 years, Emmy enjoyed scholarly and professional
success. At that time, a revolution took place in mathematics.
Emphasis shifted from computations and explicit constructions to
more abstract and conceptual approaches. David Hilbert was at
the forefront of this revolution—and so was Emmy Noether. In the
1920s and 1930s, the field of algebra changed almost beyond recog-
nition. In 1900, algebra was about solving algebraic equations.
Fifty years later, it had become the study of algebraic structures,
such as groups, rings, and fields; it had become abstract algebra.
One of the driving forces behind this shift was Emmy Noether.
A former student of hers, Bartel van der Waerden, a Dutchman,
later wrote a textbook on abstract algebra that is, to a large ex-
tent, based on Emmy Noether’s lectures at Göttingen. It has been
a standard text for decades.

By all accounts, Emmy Noether was very popular with students.
Although she was demanding and not a very good lecturer, she had
a kind personality that compensated for all that. She gathered a
group of devoted followers around her—nicknamed her satellites—
with whom she went swimming in the municipal pool and who

5Gentlemen! The senate is not a public swimming pool!

she invited to her small apartment for large bowls of pudding.
Of course, besides swimming and eating pudding, Emmy and her
satellites had long discussions about mathematics. It is interesting
to note how her students dealt with her being a woman—they
chose to ignore it. For example, she was referred to as der Noether .
In German, der is the definite article for the masculine gender.

Emmy Noether
in her later years.

Every four years, mathematicians hold
the International Congress of Mathemati-
cians (ICM). To give an invited address
at such a congress is a feat few mathe-
maticians ever accomplish. In 1932, Emmy
Noether delivered an invited presentation
at the ICM in Zurich. As you may have
guessed, she was the first woman to do so—
and for a long time after 1932, she would
remain the only one. By the way, she still
didn’t have permanent employment at that
time, even though some of her former stu-
dents had already become professors.

On January 30, 1933, Paul von Hindenburg, president of Ger-
many, appointed Adolf Hitler as chancellor. A month later, the
Reichstag went up in flames; the government blamed the com-
munists. Three weeks later, the first concentration camp began
operating, and on April 1, the systematic persecution of the Jews
started with a boycott of Jewish businesses and other facilities.

Emmy Noether in Göttingen in the spring of 1931.

Emmy Noether’s political views were left-wing. She espoused
pacifism and had been a member of the Social Democratic Party
for some time. More significantly, she was Jewish. On April 25,
1933, Emmy Noether was sent on leave, which, in fact, meant that
she had been fired.

She chose not to take any risks and accepted a visiting posi-
tion in the U.S., at Bryn Mawr women’s college in Pennsylvania.
The transition from working mainly as a researcher to undergrad-
uate teaching must have been difficult for her, but she soon suc-
ceeded again in surrounding herself with eager young minds. In
1934, Emmy returned to Germany, only to cancel the lease on her
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apartment and to arrange to have her belongings shipped back
to America. A year later, she underwent brain surgery to have
a tumour removed. Even close friends hadn’t known of her ill-
ness. On April 14, 1935, she died from complications following the
operation, never having held a permanent professional position.

As I noted at the beginning of this article, Emmy’s younger
brother Fritz was also a mathematician. Being male, he enjoyed a
smoother progression in his career. Eventually, Fritz became a full
professor in Breslau.6 After the Nazi’s rise to power, he decided
to leave Germany for the Soviet Union. There, he was one of the
millions who disappeared in Stalin’s reign of terror.

By the way, if you want to see a Noetherian ring and don’t want
to wait until you take your first course in abstract algebra, here
is an opportunity. There are “Noetherian Rings” at several North
American universities (e.g., Berkeley,7 the University of Florida,8

and the University of Wisconsin at Madison9), each a local organi-
zation of women in mathematics—faculty and students, graduate
and undergraduate alike.

A math student and a computer science student are jogging
together in a park when they hear a voice: “Please, help me!”

They stop and look. The voice belongs to a frog sitting in the
grass.

“Please, help me!” the frog repeats. “I’m not really a frog; I’m
an enchanted, handsome prince. Kiss me, and the spell will be
broken: I will be yours forever. . . ”

The computer science student picks up the frog. She examines
it carefully from all sides—not even making an attempt to kiss it.

“You don’t have to marry me,” the frog continues frantically,
“if you’re afraid of the commitment. I’ll do whatever you wish me
to do if you’ll just kiss me. . . ”

The frog’s voice is silenced when the computer science student
puts the animal into her pocket.

“But why don’t you kiss him?!” the math student asks.

“You know,” she replies, “I simply don’t have time for a
boyfriend—but a frog that talks makes a really cool pet. . . ”

Q: What is the first derivative of a cow?

A: Prime Rib!

6 now Wroc law in Poland
7 http://www.math.berkeley.edu/∼nring/
8 http://www.math.ufl.edu/∼nring/
9 http://www.math.wisc.edu/∼hollings/noethring/
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A pure and an applied mathematician are asked to calculate the
value of two times two.

The applied mathematician’s solution: We have

2 · 2 = 2 · 1

1 − 1
2

.

The second factor on the right-hand side has a geometric series
expansion

1

1 − 1
2

= 1 +
1

2
+

1

4
+

1

8
+ · · ·

Cutting off the series after the second term yields the approximate
solution

2 · 2 = 2 ·
(

1 +
1

2

)

= 3.

The pure mathematician’s solution: We have

2 · 2 = (−2) · 1

1 − 3
2

.

The second factor on the right-hand side has a geometric series
expansion

1

1 − 3
2

= 1 +
3

2
+

9

4
+

27

8
+ · · · ,

which diverges. Hence, the solution to 2 · 2 does not exist.

At a conference, a mathematician proves a theorem.
Someone in the audience interrupts him: “That proof must be

wrong—I have a counterexample to your theorem.”
The speaker replies: “I don’t care—I have another proof for it.”

At a press conference held at the White House, president George
W. Bush accused mathematicians and computer scientists in the
U.S. of misusing classroom authority to promote a Democratic
agenda. “Every math or computer science department offers an
introduction to AlGore-ithms,” the president complained. “But
not a single one teaches GeorgeBush-ithms. . . ”
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“Rare” Events

May Not Be So Rare After All

Carl Schwarz†

Winning two lotteries:
When a 1 in 2.5 billion chance occurs more

frequently than expected

So you want to be a millionaire? How about becoming an instant
millionaire twice, in just two years?

A resident of Whistler, B.C. did just that by winning the $2.2
million grand prize in the B.C. Cancer Foundation Lifestyle Lot-
tery just two years after winning the $1 million prize in the Surrey
Memorial Hospital Lottery.

How lucky can you be—after all, just living in Whistler B.C.
would be nirvana for many mere mortals. The chances of this
“rare” event occurring was dutifully reported by the Vancouver
Province, the Globe and Mail, and the CTV News as one in 2.5
billion. Is this correct?

The one in 2.5 billion figure was computed knowing that the
winner had purchased two tickets out of the 100 000 available
tickets for each of these two lotteries. Simple probability rules
then give the chance of winning both lotteries as:

Probability

(

winning
both lotteries

)

=
2

100 000
× 2

100 000
,

which was the reported result.

However, this is misleading due to the common fallacy in proba-
bility computations of confusing the probability of a specific event
with the probability of the general class of events. In this case, if
you or I had won these two lotteries, or if the winner had won two
different lotteries, the headlines would be identical.

As an analogy, the probability that you will be involved in
two accidents on your way home from work or school today is
very small, but the probability that someone, somewhere in North
America will be involved in two accidents sometime in the year is
quite large.

Computing the chances of these more general events requires
additional information that is not easily collected, so some reason-
able guesses must be made. Suppose that there are 10 000 people
in B.C. who regularly buy two tickets in each of 25 lotteries each

† Carl Schwarz is a Professor of Statistics and Actuarial Science
at Simon Fraser University in Vancouver, B.C. Visit his web site at
http://www.math.sfu.ca/∼cschwarz/.

year with 100 000 tickets sold in each lottery. What is the chance
of one person winning twice? To start, the chance of a particular
person winning any pair of lotteries is 1/2.5 billion. But there are
25×24

2
= 300 possible pairs of lotteries that could be won by each

of the 10 000 players, or roughly 3 000 000 = 300× 10 000 oppor-
tunities for this to occur. A rough approximation then gives the
overall probability of one the players winning any pair of lotter-
ies as about 3 000 000/2 500 000 000 = 1.2/1000, or about 0.1%.
Somewhat unusual, but hardly overwhelming! Considering that
across Canada there are similar situations every year in each of
the provinces, the probability that it would happen to someone,
somewhere in Canada, during a five-year window of opportunity
is not very unusual at all!

This is an example of a class of problems called occupancy prob-
lems, one of which is the familiar birthday problem. A discussion
of this and related problems can be found in the reference list at
the end of this article.

The B.C. winner discussed above can’t claim to be Canada’s
“luckiest winner.” That honour goes to Maurice and Jeanette
Garlepy of Alberta, who beat the approximately 14 million-to-
one odds of winning the grand prize for Lotto 6/49 twice. Sim-
ple probability computations show the likelihood of this event as
(1/14 000 000)2, or about 1/200 trillion. What are the actual
odds assuming 2 000 000 lottery players play biweekly for 10 years
(1000 games)? What about all the other lotteries in Canada and
the U.S.?

The correct odds are difficult to compute because of insuffi-
cient information. However, the correct odds must remain in the
“human” realm. Lottery officials and newspaper editors, either
because such events are not commonplace or because they like
to calculate numbers with many zeroes (or perhaps because they
think the public will buy more tickets) continue to make the odds
of “interesting” events much more preposterous than they really
are.
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From Rabbits to Roses
A Geometric Mystery Story

(continuation)

A by Klaus Hoechsmann†A

This is the promised continuation of our mystery series “The
Rose and the Nautilus.” The last time we met, we saw the
connection of Fibonacci’s down-to-earth sequence of “rabbit num-
bers”:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, . . . ,

with the elusive and legendary divine proportion, incarnated by
rectangles with a strange property: when you cut a square away
from one of them, you are left with a rectangle of the same shape—
so you can continue cutting off squares indefinitely. So far, we
don’t know for sure that such rectangles exist—they may be a
pipe dream or a pie in the sky. All we have our hands on, so
far, are number sequences like the one above, where two successive
numbers (high enough in the sequence) give us an approximately
golden rectangle.

Today we’ll make the journey from the golden rectangle to the
golden triangle, the major building block of the pentagram (the
five-cornered star on U.S. military vehicles), and hence the Pen-
tagon (home of U.S. military brass). How fitting that the emblem
of this remarkable institution shares its basic symmetry with the
rose and many other flowers, from buttercups to petunias!

On the right side of Figure 1 you see a rose. The underlying
pentagram (shown in light blue) is made up of golden triangles,
each of which is obtained from a golden rectangle by collapsing
one of the shorter sides to a point, like so:

=⇒

Figure 1

And if we do not have a perfect golden triangle handy, we’ll take
an approximate one made of rabbit numbers.
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b

a

Figure 2

If you were given the large, two-tone yel-
lowish triangle standing in Figure 2, you
would not have much trouble filling in the
rest of the diagram, would you? The pro-
portions of this triangle are determined by
a = 144 (base) and a+b = 233 (side) units
of length—two successive rabbit numbers.

† Klaus Hoechsmann is a professor emeritus at the Univer-
sity of British Columbia in Vancouver, B.C. You can find more
information about the author and other interesting articles at:
http://www.math.ubc.ca/ hoek/Teaching/teaching.html.

And the pentagram connection? If we knew that the base angle
of the large two-tone triangle is equal to twice its vertex angle, the
latter would be 1/5 of 180 degrees—see? Now, a/b is very nearly
equal to (a+b)/a, which means that the lower pale yellow triangle
is well-nigh isosceles, and the distance from the lower left red dot
to the blue dot is nearly equal to a. Hence, the upper deep yellow
triangle is well-nigh isosceles, and its exterior angle at the blue dot
is roughly twice the vertex angle—Q.E.D.

Do I hear you grumbling? You are not happy with all this
uncontrolled fuzziness? You’d like crisp, clean equality instead of
all those “well-nighs”? Well, last year we tried to work with so-
called “real” numbers, and you hated them when you were asked
to produce crisp, clean proofs. And then somebody said that it
all came down to Cauchy sequences and/or Dedekind cuts plus
continuity, and when we tried that approach you all freaked out.
Let’s face it: if you want numerical proportions, you must choose
between honest imperfection (e.g., rabbits) or dishonest perfection
(e.g., root five). This is not rocket science: Eudoxos realized it way
back around 400 B.C. So, let’s get back to geometry, shall we? I
admit that we have not yet constructed a perfect golden rectangle,
but I promise you it isn’t hard. For today, let us suppose it done
and continue from there.

Our task is to repeat the argument pertaining to the pentagram
connection (Figure 2) without any “nearly,” “roughly,” or “well
nigh.” Just go over it again, and you’ll see that everything will
be perfectly exact, as long as the pale yellow triangle in the lower
right of Figure 2 is truly isosceles.

Into Geometry

We have defined what a golden rectangle should be, but never
actually shown how to get one. Let’s fill that gap now, using only
a compass and a straight-edge (i.e., the notions of a circle and a
straight line).

�

A F B E

D C

Figure 3

Starting with the yellow
square (see Figure 3), we draw
a circle centered at the mid-
point of its base and going
through the top corner C. It
will meet the base line FB at
two points A and E, and

the triangle AEC has a right angle at C—okay? (If you doubt
it, just cut the triangle by a line joining C to the center of the
circle, and tally the angles in the two isosceles pieces you get.)
Since the purple rectangle is just the gray one shifted over, its
diagonal is also perpendicular to AC. If you turned it through 90
degrees, this diagonal would line up with AC. Thus, the rectangle
ABCD is similar to the purple one and is therefore golden. Any
questions?
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Figure 4

In Figure 4, we are looking at a golden
rectangle. We remove the square at the bot-
tom, shown in two shades of yellow. The
residual rectangle at the top is gray, and a
copy of it is shown (left side) inside the yel-
low square. This gray rectangle as well as
its copy is similar to the original big rectan-
gle, so the two red diagonals are parallel.

Imagine them as rubber bands, and the
dot in the lower left corner as a hinge.
Of course, we are not dealing with rubber
bands and hinges, but with geometric
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entities in our minds. Yet this metaphor
allows us to avoid tedious descriptions, and
suggests that we speak of the brown verti-
cal and horizontal sides as bars attached to
that hinge. In Figure 5, see how we make
a big isosceles triangle by simply swing-
ing the vertical bar through a small an-
gle. The rubber bands will remain parallel.
That is important, because it means that
the smaller triangle in the lower left has
the same base angles as the big one. Do
you agree? You are not quite convinced?

How perceptive of you—and right you are: mechanics is not
geometry. I promise to come back to those rubber bands. But first
let us see how to get a pentagram from the triangle in Figure 5,
supposing that the parallelism holds up. The two-tone yellowish
triangle in Figure 2 is, of course, our double triangle from Figure 5,
with the smaller copy laid on its side. Does everything fit as it
should?

First the angles: since big and small have the same base angles,
small fits snugly into the lower right corner of big. Then the sides:
the one labelled “a” in Figure 5 was the side of the square in
Figure 4, hence fits exactly along the base. So it works! But
remember: now that we have moved into geometry, “a” and “b”
are line segments, not numbers.

Desargues

This might seem a bit lengthy, but if you mull it over, it’s quite
straight forward—except for the parallelism of those rubber bands,
which seems so obvious mechanically, but hard to prove geomet-
rically. In fact, it is false in pure plane geometry—some diligent
geometers have found counterexamples—but becomes inevitably
true if the plane sits in a three-dimensional space. This was dis-
covered by Monsieur Girard Desargues about 350 years ago.

A C

B

A′ C ′

B′

Figure 6

Here he is, on the
left, staring at his the-
orem (its “affine” ver-
sion), shown on the right
in Figure 6. What does
it look like to you? A
leaning tower with two
platforms in it? Good!
What it says is this: if
two triangles ABC and

A′B′C ′ are lined up so that the lines AA′,
BB′, and CC ′ meet at a single point, and
if AB is parallel to A′B′ and BC parallel
to B′C ′, it follows that AC is also parallel
to A′C ′. Obvious?

It almost would be if we were looking at a spatial setup. Then
the hypothesis would quickly imply that the entire two “platforms”
are parallel. But this is meant as a flat, planar diagram, and, as I
have said, the theorem is impossible to prove within purely planar
geometry.

You think you can prove it by using the equations of those lines?
Goodness, now we are really turning around in circles! You want
coordinates again—but not all planes have coordinates. Now that
you’ve brought it up, let’s get this straight: yes, you can prove the

theorem by linear equations in any Cartesian plane, even if only
rational coordinates are allowed, but the result is useless for golden
triangles unless you allow irrational ones. But that’s precisely
what we wanted to avoid this semester, isn’t it?
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Figure 7

We have gone way over time—let’s prove
Girard’s theorem at our next meeting. You
will see that the proof is clever but not
hard to follow. We pretend that his di-
agram is the planar projection of a spa-
tial gizmo, then transfer the hypothesis to
the latter, draw our conclusion up there in
space and finally project down again. For
today, let me just show you how it helps to
keep our “rubber bands” parallel.

Figure 7 shows the bare bones of Fig-
ures 4 and 5 superimposed. Do you see
the rubber bands? In their original posi-
tion (attached to the vertical bar) they are
parallel. In Figure 8, we added two short
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Figure 8

red lines—which are also parallel, being
the bases of two isosceles triangles with
the same vertex angle. Hence, the rubber
bands remain parallel in their new position
(attached to the slanted bar). Et voilà!

More about Girard Desargues? He was
an engineer and mathematician who lived,
worked, and died in Lyons, France. He did
a lot of fine work and is known as the “fa-
ther of projective geometry.” That’s the
geometry of perspective. Please, now, let
me go: I barely have time to get to my con-
cert. More next time. . . yes, yes, I promise.

A mathematician and a stockbroker go to the races to bet on
horses. The stockbroker suggests a bet of $10 000. That’s too
much for the mathematician’s taste—first, he wants to understand
the rules, have a look at the horse, etc.

“Don’t worry,” the stockbroker says. “I know an empirical al-
gorithm that allows me to find the number of the winning horse
with absolute certainty.”

This does not convince the mathematician.

“You are too theoretical!” the stockbroker exclaims, and puts
his $10 000 on a horse.

The horse comes in first—making the stockbroker even richer
than he already is. The mathematician is baffled.

“What is your algorithm?” he wants to know.

“It’s rather easy. I have two children, three and five years old.
I add up their ages and bet on that number.”

“But three plus five is eight—and that horse had number nine!”

“I told you that you’re too theoretical! Didn’t I just experimen-
tally prove that my calculation is correct?!”
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Polyhedra with Six
Vertices

by Richard Ng†

In his June 1961 Mathematical Games column in Scientific
American, later anthologized in [1], Martin Gardner posed nine
problems. One of them was to count the number of different poly-
hedra with six faces. The solution given was that of John Mc-
Clellan, who published his result in [2]. In this paper, we give an
alternative and simpler solution to an equivalent problem, that of
counting the number of different polyhedra with six vertices.

The left side of Figure 1 shows the skeleton of a tetrahedron. If
we pull out the bottom face and compress the other onto it, we
obtain the planar graph shown on the right side of Figure 1. A
graph is planar if its edges only intersect at vertices.
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Figure 1
Polyhedron with Four Vertices

A non-planar graph cannot be the skeleton of a polyhedron.
There are two basic non-planar graphs. The first one, called K5,
is shown on the left side of Figure 2. It consists of five vertices
joined to one another. The second one, called K3,3, is shown on
the right side of Figure 2. Its six vertices are divided into two sets
of equal size, and two vertices are joined by an edge if and only if
they belong to different sets.
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K5 K3,3

Figure 2
Non-Planar Graphs

† Richard Ng wrote this article while he was a grade 11 student
at Archbishop MacDonald High School in Edmonton, in collaboration
with Professor Andy Liu of the University of Alberta.

The number of edges meeting at a vertex is called the degree of
the vertex. In a planar graph, which is the skeleton of a polyhe-
dron, the degree of each vertex is at least 3. If there are only four
vertices, then the degree of each vertex is at most 3. Hence, the de-
gree of the four vertices must be (3, 3, 3, 3). Thus, the tetrahedron
in Figure 1 is the only polyhedron with four vertices.

If the polyhedron has five vertices, the degree of its ver-
tices may be (3, 3, 3, 3, 3), (3, 3, 3, 4, 4), (3, 4, 4, 4, 4), (3, 3, 3, 3, 4),
(3, 3, 4, 4, 4), or (4, 4, 4, 4, 4). However, the first three sets are not
feasible since the sum of all the degrees must be an even num-
ber, equal to twice the number of edges. The fourth is a square
pyramid, shown on the left side of Figure 3; the fifth is a double
triangular pyramid, shown on the right side of Figure 3. The last
set is not the skeleton of a polyhedron because it is the non-planar
graph K5.
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Figure 3
Polyhedra with Five Vertices

How many polyhedra with six vertices are there? The degree of
each vertex is 3, 4, or 5. The following are all the possibilities
where the sum of the degrees is even:

(3, 3, 3, 3, 3, 3), (3, 3, 3, 3, 3, 5), (3, 3, 3, 3, 4, 4), (3, 3, 3, 3, 5, 5),
(3, 3, 3, 4, 4, 5), (3, 3, 4, 4, 4, 4), (3, 3, 3, 5, 5, 5), (3, 3, 4, 4, 5, 5),
(3, 4, 4, 4, 4, 5), (4, 4, 4, 4, 4, 4), (3, 3, 5, 5, 5, 5), (3, 4, 4, 5, 5, 5),
(4, 4, 4, 4, 5, 5), (3, 5, 5, 5, 5, 5), (4, 4, 5, 5, 5, 5), (5, 5, 5, 5, 5, 5).

Among these 16 sets, four have two different forms each. So,
there are altogether 20 cases to be considered. We discover that
seven of them represent polyhedra. These are shown in Figures
4(a) and 4(b).
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Figure 4(a)
Polyhedra with Six Vertices.
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Figure 4(b)
Polyhedra with Six Vertices

We conclude with the proof that there are only seven polyhedra
with six vertices. Let us draw the graphs of the 20 cases identi-
fied above. Since most edges are present, we shall draw instead
those that are missing. We quickly discover that the two cases
(3, 3, 5, 5, 5, 5) and (3, 5, 5, 5, 5, 5) cannot be drawn, leaving only
the eighteen cases in Figure 5.
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4 3 4 3 3 3 4 3 4

4 4 5 5 5 5 5 5 5

4 4 5 4 4 5 5 5 5

4 4 5 5 5 5 5 5 5

X

Y Y

X

X

X X X

X X X

Figure 5
Case Studies

The seven unmarked cases in Figure 5 are the polyhedra in Fig-
ure 4. Those marked with an X are non-planar since they contain
K3,3. While the two cases with a Y are planar graphs, they are

nevertheless not skeletons of polyhedra.

Figure 6
Impossible Polyhedra

Consider first the case (3, 3, 3, 3, 5, 5) on the left side of Figure 6.
It consists of two tetrahedra joined along an edge. It is not the
skeleton of a polyhedron. In the case (3, 3, 3, 3, 4, 4) on the right
side of Figure 6, the two quadrilateral faces have two common
vertices, those of degree 4, but they are adjacent. This is also not
a skeleton of a polyhedron.

References:
[1] Martin Gardner. New Mathematical Diversions. Mathematical As-
sociation of America, 1995, pages 224–225 and 233.

[2] John McClellan. The Hexahedra Problem. Recreational Mathemat-
ics Magazine, volume 4, 1961, pages 34–40.

Four friends have been doing really well in their calculus class:
they have received top grades for their homework and on the
midterm. So when it’s time for the final, they decide not to study
on the weekend before, but to drive to another friend’s birthday
party in another city—even though the exam is scheduled for Mon-
day morning. As it happens, they drink too much at the party, and
on Monday morning, they are all hungover and oversleep. When
they finally arrive on campus, the exam is already over.

They go to the professor’s office and offer him an explanation,
“We went to our friend’s birthday party, and when we were driving
back home very early on Monday morning, we suddenly had a flat
tire. We had no spare, and since we were driving on back roads,
it took hours until we got help.”

The professor nods sympathetically and says, “I see that it was
not your fault. I will allow you to make up for the missed exam
tomorrow morning.”

When they arrive early on Tuesday morning, the students are
taken by the professor to a large lecture hall and are seated so far
apart from each other that, even if they were to try, they would
have no chance to cheat. The exam booklets are already in place,
and confidently, the students start writing. The first question—
five points out of 100—is a simple exercise in integration, and all
four finish it within 10 minutes. The first to complete the problem
turns over the page of the exam booklet and reads the next one:
Problem 2 (95 points out of 100): Which tire went flat?
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Inequalities for
Convex Functions

(Part II)

by Dragos Hrimiuc†

In the December 2001 issue of π in the Sky, we used convex
functions to obtain several important inequalities. In this note we
will describe another strategy to derive inequalities using convex
functions.

Inequalities with Constraints

If f : [a, b] → R is a convex function, it achieves its maximum
value at a or at b; that is,

f(x) ≤ max{f(a), f(b)}, for every x ∈ [a, b]. (1)

You can see this property demonstrated in the graphs below:

x x

y y

0 0

�

��

�
�

��

�

����

a b a b

f(a)

f(a)f(b)

f(b)

We can write a proof of (1). Indeed, x ∈ [a, b] if and only if
there exists λ ∈ [0, 1] such that x = λa + (1 − λ)b. If we set
M = max{f(a), f(b)}, we get:

f(x) = f(λa + (1 − λ)b)

≤ λf(a) + (1 − λ)f(b)

≤ λM + (1 − λ)M = M.

The inequality (1) can be extended for functions of n-variables.
Assume that we have a function of n variables

F = F (x1, . . . , xn), xi ∈ [ai, bi], i = 1, . . . , n.

We say that F is convex in xk if

f(xk) = F (x1, . . . , xk−1, xk, xk+1, . . . , xn)

is convex for every xi ∈ [ai, bi], i = 1, . . . , n, i 6= k. That is, by
keeping x1, . . . , xk−1, xk+1, . . . , xn fixed, we get a function of xk

only, which is a convex function.

Theorem: If F is convex in every xi ∈ [ai, bi], i = 1, . . . , n, then

F (x1, . . . , xn) ≤ max
ti∈{ai,bi}
i=1,...,n

F (t1, . . . , tn). (2)

That is, the maximum value of F must be achieved at one of
the 2n vertices of the n-box [a1, b1] × . . . × [an, bn].

† Dragos Hrimiuc is a professor in the Department of Mathemat-
ical Sciences at the University of Alberta.

Proof: By using (1) and taking into account that F is convex
in x1, we get

F (x1, . . . , xn) ≤ max
t1∈{a1,b1}

F (t1, x2, . . . , xn)

for every xi ∈ [ai, bi], i = 1, . . . , n. On the other hand, F is convex
with respect to x2. Therefore,

F (t1, x2, . . . , xn) ≤ max
t2∈{a2,b2}

F (t1, t2, x3, . . . , xn)

for every t1 ∈ {a1, b1}, xi ∈ [ai, bi], i = 2, . . . , n. From the last two
inequalities we get

F (x1, . . . , xn) ≤ max
ti∈{ai,bi}

i=1,2

F (t1, t2, x3, . . . , xn)

for every xi ∈ [ai, bi], i = 1, . . . , n. Repeating the above argument,
we easily get (2).

Example 1. (Kantorovich’s Inequality)
If pi ≥ 0 and 0 < a ≤ xi ≤ b, i = 1, . . . , n, then

(

n
∑

i=1

pixi

)(

n
∑

i=1

pi

xi

)

≤ (a + b)2

4ab

(

n
∑

i=1

pi

)2

− (a − b)2

4ab
min

X∪Y =An

X∩Y =∅

(

∑

i∈X

pi −
∑

j∈Y

pj

)2

,

(3)

where An = {1, 2, . . . , n}.
Solution: Consider the function

F (x1, . . . , xn) =

(

n
∑

i=1

pixi

)(

n
∑

i=1

pi

xi

)

.

Setting Mi =

n
∑

j=1

j 6=i

pjxj and Ni =

n
∑

j=1

j 6=i

pj

xj
, we see that

f(xi) = (pixi + Mi)

(

pi

xi
+ Ni

)

= p2
i + MiNi + piNixi + piMi

1

xi
.

Now f is convex, because f ′′(xi) > 0; hence F is convex in xi,
i = 1, . . . , n.

On using (2), we see that F obtains its maximal value at one of
the 2n vertices of the n-box [a1, b1] × . . . × [an, bn].

Therefore,

F (x1 . . . , xn) ≤

max
X∪Y =An

X∩Y =∅

(

a
∑

i∈X

pi + b
∑

j∈Y

pj

)(

1

a

∑

i∈X

pi +
1

b

∑

j∈Y

pj

)

. (4)

Taking into account the identity

AB =
1

4ab
(A + abB)2 − 1

4ab
(A − abB)2,

we get
(

a
∑

i∈X

pi + b
∑

j∈Y

pj

)(

1

a

∑

i∈X

pi +
1

b

∑

j∈Y

pj

)

=
(a + b)2

4ab

(

n
∑

i=1

pi

)2

− (a − b)2

4ab

(

∑

i∈X

pi −
∑

j∈Y

pj

)2

.
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On using this identity in (4), we then get (3).

Example 2. If 0 < a ≤ xi ≤ b, i = 1, . . . , n, then
(

n
∑

i=1

xi

)(

n
∑

i=1

1

xi

)

≤ (a + b)2

4ab
n2 − (a − b)2

4ab

[

1 − (−1)n

2

]

.

Solution: Use Example 1.

Example 3. If α, β, γ ∈ [0, π/2], prove that

(

cos
α

2
+ cos

β

2
+ cos

γ

2

)(

sec
α

2
+ sec

β

2
+ sec

γ

2

)

≤ 5 + 3
√

2.

Solution: Since α, β, γ ∈ [0, π/2], we have α
2
, β

2
, γ

2
∈ [0, π

4
].

Hence cos α
2
, cos β

2
, cos γ

2
∈ [

√
2/2, 1]. Now we can use Example 2.

Example 4. If a, b, c ∈ [0, 1], then

a

b + c + 1
+

b

c + a + 1
+

c

a + b + 1
+ (1 − a)(1 − b)(1 − c) ≤ 1.

(USA Mathematical Olympiad, 1980)

Solution: The function

F (a, b, c) =
a

b + c + 1
+

b

c + a + 1
+

c

a + b + 1
+(1−a)(1−b)(1−c)

is convex in each a, b, and c. Hence, its maximum value is achieved
at one of the 23 vertices of the box [0, 1]×[0, 1]×[0, 1]; that is, at one
of the following points: (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0),
(0, 1, 1), (1, 0, 1), (1, 1, 1). We deduce that max

a,b,c∈[0,1]
F (a, b, c) = 1;

this value is achieved at each of the vertices of the box.

Example 5. If 0 < a ≤ xi ≤ b, i = 1, . . . , n, then

(

n
∑

i=1

xi

)2

≥ 4nab

(a + b)2

n
∑

i=1

x2
i .

Solution: By taking pi = xi in (3), we get

(

n
∑

i=1

x2
i

)

· n ≤ (a + b)2

4ab

(

n
∑

i=1

xi

)2

,

which is the required inequality.

By using the method described in this note, prove the following
inequalities:

Problem 1. If a, b, c ∈ [0, 1], then

1

1 + a + b
+

1

1 + b + c
+

1

1 + c + a
+ k(1 − abc) ≤ max{1, 3 + k}.

Problem 2. If a, b, c ∈ [1, 2], then

(a + 5b + 9c)

(

1

a
+

5

b
+

9

c

)

≤ 225.

When does equality occur?

Solution to
a Geometry Problem

by
Brendan Capel1 and Alan Tsay2

On October 23, 2001, five University of Alberta mathematicians in-
vaded the grade 10 and 11 classes at Tempo School in Edmonton. See
[2] for a brief account. The unidentified mathematician was Henry van
Roessel, who was behind the camera.

15◦15◦
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A B

X
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��

�

�

Dragos Hrimiuc offered a $5 prize to any-
one who could solve the following geometry
problem: “Consider a square ABCD with
a point X inside it such that ∠XCD =
∠XDC = 15◦. Prove that triangle ABX
is equilateral.” The prize was not claimed
that day.

C D

A B

O
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��

�

�

Later, we found the same problem in [1].
Here is the published solution: Let O be
the point inside ABCD such that triangle
ABO is equilateral. Then ∠OAB = 60◦,
so that ∠CAO = 30◦. Now AO = AB =
AC. Hence ∠ACO = ∠AOC = 1

2
(180◦ −

∠CAO) = 75◦, so that ∠OCD = 15◦. Sim-
ilarly, ∠ODC = 15◦. It follows that the
point O must coincide with the point X.
Since ABO is an equilateral triangle, so is
ABX.

We wondered if there is a direct approach that will solve this problem.
After some work, we came up with the following argument.
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X
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Let Y be the point inside triangle
DBX such that DXY is equilateral. Then
∠XDY = 60◦, so that ∠BDY = 15◦ =
∠XDC. Since DY = DX and DB = DC,
triangles DBY and DCX are congruent to
each other, so that

∠BY D = ∠CXD = 180◦ − ∠XCD − ∠XDC = 150◦

and BY = CX = DX = XY . Now

∠BY X = 360◦ − ∠BY D − ∠DY X = 150◦,

so that

∠BXY = ∠XBY =
1

2
(180◦ − ∠BY X) = 15◦.

It follows that ∠BDX = ∠BXD, so that BX = BD. By symmetry,

BX = AX. Hence, ABX is indeed an equilateral triangle.

References:
[1] D. V. Fomin. Criminal Geometry—A Matter of Principle. Quantum,
September/October 1991, 47–49 and 61.

[2] D. Stanley. π in the Sky at Tempo School, π in the Sky , December
2001, 28.

1 Brendan Capel submitted this solution while he was a grade 10
student at Tempo School, Edmonton.

2 Alan Tsay submitted this solution while he was a grade 9 student
at Vernon Barford School, Edmonton.
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Problem 1. Let f : R → R, f(x) = x2 −5|x|+ 9. Find all finite subsets
A ⊂ R such that for every x ∈ A, f(x) ∈ A.

Problem 2. Find all positive integers m and n such that 1 + 2n = 3m.

Problem 3. Prove that each rational number m
n

, with 0 < m
n

< 1, can
be written as

m

n
=

1

a1
+

1

a2
+ . . . +

1

ak
,

where 0 < a1 < a2 < . . . < ak are integers and each ar−1 is a divisor of
ar, for r = 2, 3, . . . , k.

Problem 4. Inside of the square ABCD, take any point P . Prove that
the perpendiculars from A on BP , from B on CP , from C on DP , and
from D on AP are concurrent (i.e. they meet at one point).

Problem 5. A rectangular piece of cardboard is cut straight into two
pieces. One of these two pieces is cut again in two, and so on. Find the
minimum number of cuts that must be done such that among all the
pieces there will be 2002 polygons with 2003 sides.

Problem 6. Let f, g : [a, b] → [0,∞) be two convex functions, with
xi ∈ [a, b], pi ≥ 0, i = 1, . . . , n. Show that for every k > 0,

(

n
∑

i=1

pif(xi)

)(

n
∑

i=1

pig(xi)

)

≤ 1

4k
M2

(

n
∑

i=1

pi

)2

,

where M = max{f(a) + kg(a), f(b) + kg(b)}.

Send your solutions to π in the Sky : Math Challenges.

Solutions to the Problems Published in the
December, 2001 Issue of π in the Sky:

Problem 1. (By Edward T.H. Wang from Waterloo)
Let A = a

b+c−a
+ b

c+a−b
+ c

a+b−c
and s = 1

2
(a + b + c) denote the

semi-perimeter of the triangle. Then

A = 1
2

(

a
s−a

+ b
s−b

+ c
s−c

)

= 1
2

(

s−(s−a)
s−a

+
s−(s−b)

s−b
+

s−(s−c)
s−c

)

= 1
2

(

s
s−a

+ s
s−b

+ s
s−c

− 3
)

.
(1)

Since s − a > 0, s − b > 0, and s − c > 0, we have by the Cauchy–
Schwarz Inequality that

s
s−a

+ s
s−b

+ s
s−c

= [(s − a) + (s − b) + (s − c)]
(

1
s−a

+ 1
s−b

+ 1
s−c

)

≥ 9.

On substituting the last inequality into (1), A ≥ 3 follows immediately.

Alternative Solution to Problem 1: Let f(x) = x
s−x

for x < s.

Since f ′′(x) = 2s/(s − x)3 > 0, we see that f is strictly convex. By
Jensen’s Inequality we get

a

s − a
+

b

s − b
+

c

s − c
≥ 6 ⇐⇒ A ≥ 3.

The inequality holds if and only if a = b = c.

Problem 2. (i) Let f(x) = tanp x, with x ∈ (0, π
2

), p ≥ 1. Since
f ′′(x) > 0, f is strictly convex on (0, π

2
) and the required inequality

follows from Jensen’s Inequality (see 4 , Math Strategies, π in the Sky ,
December 2001).

(ii) Let f(x) = ln(sin x), with x ∈ (0, π). Since f ′′(x) = − csc2 x, f
is strictly concave on (0, π). Using Jensen’s Inequality (see 4’ , Math
Strategies, π in the Sky , December 2001), we get

ln sin α′ + ln sin β′ + ln sin γ′ ≤ 3 ln sin
α′ + β′ + γ′

3
,

where α′, β′, γ′ are the angles of a triangle. This inequality can also be
written as:

sin α′ sin β′ sin γ′ ≤
(√

3

2

)3

.

Let α′ = π
2
− α

2
, β′ = π

2
− β

2
, γ′ = π

2
− γ

2
. Now

sin

(

π

2
− α

2

)

sin

(

π

2
− β

2

)

sin

(

π

2
− γ

2

)

≤ 3
√

3

8
.

That is,

cos
α

2
cos

β

2
cos

γ

2
≤ 3

√
3

8
.

Note: There was a typographical error in the original published state-
ment of Problem 2(ii). The inequality should read as above. Note that
the assumption that α, β, γ are the angles of an acute triangle is not
necessary. Also, in Problem 3, a should be replaced by s.

Problem 3. (By Edward T.H. Wang from Waterloo)
By the Cauchy–Schwarz Inequality, we have

n
∑

k=1

s

s − ak
=

(n − 1)s

n − 1

n
∑

k=1

1

s − ak

=
1

n − 1

[

n
∑

k=1

(s − ak)

] [

n
∑

k=1

1

s − ak

]

≥ n2

n − 1
.

Alternative Solution to Problem 3: Let f(x) = s
s−x

, x < s. Since

f ′′(x) > 0 on (−∞, s), we see that f is strictly convex. Using Jensen’s
Inequality, we get

1

n

n
∑

k=1

s

s − ak
≥ s

s − s
n

⇐⇒
n
∑

k=1

s

s − ak
≥ n2

n − 1
.

Problem 4.

Let f(x) = x
s+(m−1)x

, where s + (m − 1)x > 0. Since

f ′′(x) =
2s(1 − m)

[s + (m − 1)x]3
,

we see that f is convex if m ∈ [0, 1] and is concave if m ∈ [1,∞).
Let m ∈ [0, 1]. By Jensen’s Inequality,

n
∑

k=1

ak

s + (m − 1)ak
≥ n

a1+...+an

n

s + (m − 1) a1+...+an

n

.

Taking s = a1 + . . . + an, we have s + (m − 1)ak > 0 for k = 1, . . . , n.
Hence

a1

ma1 + a2 + . . . + an
+ . . . +

an

a1 + a2 + . . . + man
≥ n

m + n − 1
,

as requested.
If m ∈ [1,∞), the inequality reverses since f is concave.

Problem 5. (By Edward T.H. Wang from Waterloo)
Let λk = ak

a1+a2+...+an
, k = 1, 2, . . . , n. Then λk > 0 and

∑n
k=1 λk = 1.

Then, by the Weighted AM–GM Inequality (see 5 , Math Strategies,
π in the Sky , December 2001), we have

1
a1+a2+...+an

n
∑

k=1

akx
1/ak

k =
n
∑

k=1

λkx
1/ak

k ≥
n
∏

k=1

x

λk
ak
k

=
n
∏

k=1

x
1

a1+...+an

k =

(

n
∏

k=1

xk

) 1
a1+...+an

,

from which the requested inequality follows.

Problem 6.

Using the Hölder Inequality, we find

a(sin x)
1
p + b(cos x)

1
p ≤ (as + bs)

1
s

(

sin
`
p x + cos

`
p x

) 1
`

,
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where 1
`

+ 1
s

= 1 and `, s > 1. By choosing ` = 2p, we get s = 2p
2p−1

,

and the required inequality follows immediately.

Problem 7. (By Y. Chen and Edward T.H. Wang from Waterloo)

We shall prove a stronger result:

| sin a1 sin a2 . . . sin an| + | cos a1 cos a2 . . . cos an| ≤ 1 (5)

for n > 2 and for all ai ∈ R, where i = 1, . . . , n. Clearly (5) implies
the required inequality. We prove (5) by induction on n. For n = 2, we
have, by the Cauchy–Schwarz Inequality, that

| sin a1 sin a2| + | cos a1 cos a2| ≤
√

sin2 a1 + cos2 a1

√

sin2 a2 + cos2 a2

= 1.

That is, (5) holds for n = 2. Suppose that (5) holds for n = k ≥ 2.
Then, for ak+1 ∈ R, we have, by the Cauchy–Schwarz Inequality and
the induction hypothesis, that

| sin a1 . . . sin ak sin ak+1| + | cos a1 . . . cos ak cos ak+1|
≤
√

| sin a1 . . . sin ak|2 + | cos a1 . . . cos ak|2
√

sin2 ak+1 + cos2 ak+1

≤ | sin a1 . . . sin ak| + | cos a1 . . . cos ak| ≤ 1.

Hence (5) holds for n = k + 1, and this completes the induction.

Problem 8. If x1, x2, . . . , xn are positive real numbers and x1 ≤ x2 ≤
. . . ≤ xn, then xn

1 ≤ xn
2 ≤ . . . ≤ xn

n. By using Chebyshev’s Inequality
(see Math Strategies, π in the Sky , December 2000), we get

n
∑

i=1
i6=k

xn
i =

n
∑

i=1
i6=k

xn−1
i xi ≥ 1

n − 1









n
∑

i=1
i6=k

xi

















n
∑

i=1
i6=k

xn−1
i









,

for k = 1, 2, . . . , n. The AM–GM Inequality (see 5 , Math Strategies,
π in the Sky , December 2001) yields

n
∑

i=1
i6=k

xn−1
i ≥ (n − 1)x1 . . . xk−1xk+1 . . . xn, k = 1, 2, . . . , n.

Therefore,

n
∑

i=1
i6=k

xn
i ≥ (x1 . . . xk−1xk+1 . . . xn)

n
∑

i=1
i6=k

xi, k = 1, 2, . . . , n.

This inequality can also be written as

xn
1 + . . . + xn

k−1 + xn
k+1 + . . . xn

n + x1x2 . . . xn

≥ x1 . . . xk−1xk+1 . . . xn(x1 + x2 + . . . + xn),

or
1

x1x2 . . . xn + xn
1 + . . . + xn

k−1 + xn
k+1 + . . . xn

n

≤ 1

x1 + . . . + xn
· 1

x1 . . . xk−1xk+1 . . . xn

for k = 1, 2, . . . , n. Adding up these inequalities, we get

n
∑

k=1

1

x1x2 . . . xn + xn
1 + . . . + xn

k−1 + xn
k+1 + . . . xn

n

≤ 1

x1x2 . . . xn
.

On setting xn
k = ak for k = 1, 2, . . . , n we obtain the required inequality.

Problem 9. We may assume that x ≤ y < z.
Case 1: y ≤ x+z

2
. Then we can draw the following picture:

�������
x

x+y
2 y

x+y+z
3

x+z
2

y+z
2 z

We have

x + z

2
= (1 − α)

x + y + z

3
+ αz, α ∈ [0, 1]

and
y + z

2
= (1 − β)

x + y + z

3
+ βz, β ∈ [0, 1].

On solving the above equations for α and β, we find

α =
x + z − 2y

2(2z − x − y)
and β =

y + z − 2x

2(2z − x − y)
;

hence α + β = 1
2

. Since f is convex, we have

f

(

x + z

2

)

≤ (1 − α)f

(

x + y + z

3

)

+ αf(z),

f

(

y + z

2

)

≤ (1 − β)f

(

x + y + z

3

)

+ βf(z),

f

(

x + y

2

)

≤ 1

2
f(x) +

1

2
f(y).

Adding these three inequalities, we obtain the required inequality.
Case 2: y > x+z

2
. The above picture becomes

�������
x

x+y
2 y

x+y+z
3

x+z
2

y+z
2 z

Now, we can write:

x + y

2
= (1 − γ)x + γ x+y+z

3
, γ ∈ [0, 1],

x + z

2
= (1 − δ)x + δ x+y+z

3
, δ ∈ [0, 1].

We can solve for γ and δ and get

γ =
3

2

y − x

y + z − 2x
, and δ =

3

2

(

z − x

y + z − 2x

)

,

hence γ + δ = 3
2

. Again, since f is convex we have

f

(

x + y

2

)

≤ (1 − γ)f(x) + γf

(

x + y + z

3

)

,

f

(

x + z

2

)

≤ (1 − δ)f(x) + δf

(

x + y + z

3

)

,

f

(

y + z

2

)

≤ 1

2
f(y) +

1

2
f(z),

and the required inequality follows by adding these inequalities.

Explanation of the joke “Why do mathematicians of-
ten confuse Christmas and Halloween? Because Oct 31 =
Dec 25.”

Notice that 31 in base 8 (Oct) = 25 in the decimal system (Dec).
Solutions were received from: John Freal, Andrew Walenstein,
Cindy Maldonado, Keith Edwards, Connye LaCombe, Chad Goo-
bie, and John Boyer.

Dear Pi,

I recently picked up a copy of π in the Sky while visiting the Faculty
of Science at the U of A. Fun reading!

One of your jokes asked how to split 14 cubes of sugar among three
cups of coffee such that each receives an odd number of cubes. There
actually is a way to do this: put 3 in the first cup, 3 in the second cup
(or 1 and 5), then use the remaining 8 to form a cube of side length 2
and place the resulting cube in the third cup.

Cheers, John Boyer (Edmonton)
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Cover Page Story
by George
Peschke†

Oops!!! Just What
Happened to Prof.

Zmodtwo?

We don’t really know. There is no limit to speculation though,
with suggested answers ranging from: “He thought the interior of
the jar was pleasantly warmer than his study,” to “He was trying to
escape a bunch of Greek characters—%$ΥΘ—that had suddenly
appeared on his desk.”

However, there have been some episodes in Prof. Binarius
Zmodtwo’s life that suggest a tragic error in computing with signs
led to his unfortunate and very unexpected whereabouts.

We know that in high school young Binarius suffered from a se-
vere form of Quadratic Formula Syndrome (QFS). Probably most
of us can remember this experience:

,

the red ink coming from our teacher’s corrective marker. With a
stern face, our teacher might have proceeded to remind us

(a + b)2 = (a + b)(a + b)
= a(a + b) + b(a + b)
= a2 + ab + ab + b2

= a2 + 2ab + b2.

Thanks to our teacher’s patience, most of us got it right even-
tually. Not so, however, Binarius. To him, this “2ab” was no
less than an insult to what seems intuitively right: if you want to
square a bracket, you square the things inside of it. So he just
continued to insist on the incorrect formula (a + b)2 = a2 + b2,
which is a characteristic symptom of QFS.

He looked hard for a way to defend his perception, and even-
tually found it by adopting a simplified number system—one that
contains only the numbers 0 and 1, and in which one computes
1 + 1 = 0, and so 1 = −1. Therefore,

1ab + 1ab = 0ab = 0,

which justifies his version of the quadratic formula.

Binarius was so delighted with his discovery that he wrote ex-
tensively about it. He even dedicated an entire book on arithmetic
to the subject. More recently, at an arts exhibition, he encountered
the remarkable surface of Möbius.1

You can construct this surface by gluing the edges of a paper strip
to form a loop with a twist.

† George Peschke is a professor in the Department of Mathemat-
ical and Statistical Sciences at the University of Alberta. You can visit
his web page at: http://www.ualberta.ca/dept/math/gauss/george/.

1 August Ferdinand Möbius (1790–1868)—German mathematician
and theoretical astronomer who is best known for his work in analytic
geometry and in topology.

An ant travelling on the Möbius surface would have an unex-
pected experience. Follow the uppermost ant once around the
loop; it will finish on the side opposite to its starting point. After
another round trip, it will arrive back at its original starting point.
That is, each round trip causes a side swap, and the side swaps
caused by two round trips have cancelled each other—cancelled,
as if we had done nothing at all. Just like 1 + 1 = 0! (This is
amazing—try it out yourself!)

M.C. Escher’s “Möbius Strip II” c©2002 Cordon Art B.V.
- Baarn - Holland. All rights reserved.

Binarius Zmodtwo was fascinated. This surface was, in a way,
just like his simplified number system. Then he encountered the
bottle of Felix Klein.2 Although we cannot construct the Klein

c©Copyright John M Sullivan∗

University of Illinois

bottle in our three-dimensional world
(we can only create 3D projec-
tions, such as those available at
http://www.kleinbottle.com), we can
imagine it being built by gluing the
opposite edges of the following paper
strip, with like-coloured arrows aligned:

In any event, Binarius Zmodtwo was thrilled to discover that
the Klein bottle has no interior: if you wander along what appears
to be the interior wall, you end up on what appears to be the
exterior. Keep wandering, and you are back to where you started.
Just like 1 + 1 = 0 again!

When Mom’s sweet homemade cherries arrived, perhaps Prof.
Zmodtwo lacked a tool to open the jar and tried to use his theories
instead!
Comment: These one-sided surfaces have another intriguing fea-
ture. Imagine if the ant in Escher’s drawing was perfectly flat, so
that it actually lived inside the surface. Such an ant could make
a round trip and return as its own mirrored image! Try it: make
a Möbius strip and two ants out of a sheet of clear plastic. On
each ant mark its heart on the left side. Then, glue one ant to
the surface and slide the other once around the strip. If before the
trip both ants had matching heart positions, the returning ant will
have its heart in the mirrored position.

The universe in which we live is somewhat like a surface. Only
we have, in addition to the directions “forward–backward” and
‘left–right,” also the direction “up–down.” The situation inside our
universe is just like that of the flat ant living within the Möbius
surface. So we ask: Is our universe like a one-sided surface, in
which a trip around it would bring us back to the initial point
as our mirrored image? As of yet, the answer to this question is
unknown.

2 Christian Felix Klein (1849–1925)—German mathematician whose
unified view of geometry as the study of the properties of a space that are
invariant under a given group of transformations, known as the Erlanger
Program, profoundly influenced mathematical developments.

∗ Used with permission.
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